62
Views
0
CrossRef citations to date
0
Altmetric
Articles

In-Vitro Degradation and Biological Properties of Poly(Lactide-co-Glycolide-co-ε-Caprolactone)/Ethanediamine Modified Poly(Lactide-co-Glycolide) Blend Scaffolds

, , , , , , & show all
Pages 1270-1281 | Received 12 Oct 2022, Accepted 10 Dec 2022, Published online: 19 Jan 2023

References

  • Nair, L. S.; Laurencin, C. T. Biodegradable Polymers as Biomaterials. Prog. Polym. Sci. 2007, 32, 762–798. DOI: 10.1016/j.progpolymsci.2007.05.017.
  • Gentile, P.; Chiono, V.; Carmagnola, I.; Hatton, P. V. An Overview of Poly(Lactic-co-Glycolic) Acid (PLGA)-Based Biomaterials for Bone Tissue Engineering. Int. J. Mol. Sci. 2014, 15, 3640–3659. DOI: 10.3390/ijms15033640.
  • Liu, X.; Ma, P. X. Polymeric Scaffolds for Bone Tissue Engineering. Ann. Biomed. Eng. 2004, 32, 477–486. DOI: 10.1023/B:ABME.0000017544.36001.8e.
  • Zhou, Z.; Wu, W.; Fang, J.; Yin, J. Polymer-Based Porous Microcarriers as Cell Delivery Systems for Applications in Bone and Cartilage Tissue Engineering. Int. Mater. Rev. 2021, 66, 77–113. DOI: 10.1080/09506608.2020.1724705.
  • Asghari, F.; Samiei, M.; Adibkia, K.; Akbarzadeh, A.; Davaran, S. Biodegradable and Biocompatible Polymers for Tissue Engineering Application: A Review. Artif. Cells Nanomed. Biotechnol. 2017, 45, 185–192. DOI: 10.3109/21691401.2016.1146731.
  • Lei, B.; Guo, B.; Rambhia, K. J.; Ma, P. X. Hybrid Polymer Biomaterials for Bone Tissue Regeneration. Front. Med. 2019, 13, 189–201. DOI: 10.1007/s11684-018-0664-6.
  • Zhou, Z.; Xiang, L.; Ou, B.; Huang, T.; Zhou, H.; Zeng, W.; Liu, L.; Liu, Q.; Zhao, Y.; He, S.; Huang, H. Biological Assessment in-Vivo of Gel-HA Scaffold Materials Containing Nano-Bioactive Glass for Tissue Engineering. J. Macromol. Sci., Part A, Pure Appl. Chem. 2014, 51, 572–576. DOI: 10.1080/10601325.2014.916178.
  • Dwivedi, R.; Kumar, S.; Pandey, R.; Mahajan, A.; Nandana, D.; Katti, D. S.; Mehrotr, D. Polycaprolactone as Biomaterial for Bone Scaffolds: Review of Literature. J. Oral Biol. Craniofac. Res. 2020, 10, 381–388. DOI: 10.1016/j.jobcr.2019.10.003.
  • Gu, L.; Shan, T.; Ma, Y. X.; Tay, F. R.; Niu, L. Novel Biomedical Applications of Crosslinked Collagen. Trends Biotechnol. 2019, 37, 464–491. DOI: 10.1016/j.tibtech.2018.10.007.
  • Lu, Y.; Li, L.; Zhu, Y.; Wang, X.; Li, M.; Lin, Z.; Hu, X.; Zhang, Y.; Yin, Q.; Xia, H.; Mao, C. Multifunctional Copper-Containing Carboxymethyl Chitosan/Alginate Scaffolds for Eradicating Clinical Bacterial Infection and Promoting Bone Formation. ACS Appl. Mater. Interfaces 2018, 10, 127–138. DOI: 10.1021/acsami.7b13750.
  • Chen, S.; Zhang, Q.; Nakamoto, T.; Kawazoe, N.; Chen, G. Gelatin Scaffolds with Controlled Pore Structure and Mechanical Property for Cartilage Tissue Engineering. Tissue Eng. Part C Methods 2016, 22, 189–198. DOI: 10.1089/ten.TEC.2015.0281.
  • Kundu, J.; Shim, J.-H.; Jang, J.; Kim, S.-W.; Cho, D.-W. An Additive Manufacturing-Based PCL-Alginate-Chondrocyte Bioprinted Scaffold for Cartilage Tissue Engineering. J. Tissue Eng. Regen. Med. 2015, 9, 1286–1297. DOI: 10.1002/term.1682.
  • Park, H.; Lee, H. J.; An, H.; Lee, K. Y. Alginate Hydrogels Modified with Low Molecular Weight Hyaluronate for Cartilage Regeneration. Carbohydr. Polym. 2017, 162, 100–107. DOI: 10.1016/j.carbpol.2017.01.045.
  • Chen, P.; Zhou, Z.; Liu, W.; Huang, T.; Wu, W.; Yi, M.; Zhang, C.; He, X.; Fang, J. Preparation and Properties of Sodium Alginate/Silk Fibroin Microcarriers. J. Macromol. Sci., Part B, Phys. 2022, 61, 636–648. DOI: 10.1080/00222348.2022.2093014.
  • Collins, M. N.; Birkinshaw, C. Hyaluronic Acid Based Scaffolds for Tissue Engineering-a Review. Carbohydr. Polym. 2013, 92, 1262–1279. DOI: 10.1016/j.carbpol.2012.10.028.
  • Peter, M.; Ganesh, N.; Selvamurugan, N.; Nair, S.; Furuike, T.; Tamura, H.; Jayakumar, R. Preparation and Characterization of Chitosan–Gelatin/Nanohydroxyapatite Composite Scaffolds for Tissue Engineering Applications. Carbohydr. Polym. 2010, 80, 687–694. DOI: 10.1016/j.carbpol.2009.11.050.
  • Thambi, T.; Giang Phan, V. H.; Kim, S. H.; Duy Le, T. M.; Lee, D. S. Hyaluronic Acid Decorated pH-and Temperature-Induced Injectable Bioconjugates for Sustained Delivery of Bioactive Factors and Highly Efficient Wound Regeneration. New J. Chem. 2019, 43, 18979–18982. DOI: 10.1039/C9NJ03687C.
  • Ngiam, M.; Liao, S.; Patil, A. J.; Cheng, Z.; Chan, C. K.; Ramakrishna, S. The Fabrication of Nano-Hydroxyapatite on PLGA and PLGA/Collagen Nanofibrous Composite Scaffolds and Their Effects in Osteoblastic Behavior for Bone Tissue Engineering. Bone 2009, 45, 4–16. DOI: 10.1016/j.bone.2009.03.674.
  • Wubneh, A.; Tsekoura, E. K.; Ayranci, C.; Uludağ, H. Current State of Fabrication Technologies and Materials for Bone Tissue Engineering. Acta Biomater. 2018, 80, 1–30. DOI: 10.1016/j.actbio.2018.09.031.
  • Zhou, Z. W.; Zhou, Z. H.; Liu, W. J.; Huang, T. L.; Zhao, Y. M.; Chen, P.; Wang, D.; Fang, J. J. Preparation and Degradation Behaviors of Poly(L-Lactideco-Glycolide-co-ε-Caprolactone)/1,4-Butanediamine Modified Poly(Lactic-co-Glycolic Acid) Blend Film. J. Macromol. Sci., Part B, Phys. 2020, 59, 491–501. DOI: 10.1080/00222348.2020.1746027.
  • Grémare, A.; Guduric, V.; Bareille, R.; Heroguez, V.; Latour, S.; L'heureux, N.; Fricain, J.-C.; Catros, S.; Le Nihouannen, D. Characterization of Printed PLA Scaffolds for Bone Tissue Engineering. J. Biomed. Mater. Res. A 2018, 106, 887–894. DOI: 10.1002/jbm.a.36289.
  • Zhou, Z.; Liu, L.; Liu, Q.; Yi, Q.; Zhao, Y.; Zeng, W.; Liu, X. Biological Assessment of Composite Materials Based on poly-L-Lactide and Bovine Bone. Int. J. Polym. Mater. Polym. Biomater. 2013, 62, 81–84. DOI: 10.1080/00222348.2012.672295.
  • Ceonzo, K.; Gaynor, A.; Shaffer, L.; Kojima, K.; Vacanti, C. A.; Stahl, G. L. Polyglycolic Acid Induced Inflammation: Role of Hydrolysis and Resulting Complement Activation. Tissue Eng. 2006, 12, 301–308. DOI: 10.1089/ten.2006.12.ft-21.
  • Siddiqui, N.; Asawa, S.; Birru, B.; Baadhe, R.; Rao, S. PCL-Based Composite Scaffold Matrices for Tissue Engineering Applications. Mol. Biotechnol. 2018, 60, 506–532. DOI: 10.1007/s12033-018-0084-5.
  • Luginina, M.; Schuhladen, K.; Orrú, R.; Cao, G.; Boccaccini, A. R.; Liverani, L. Electrospun PCL/PGS Composite Fibers Incorporating Bioactive Glass Particles for Soft Tissue Engineering Applications. Nanomaterials 2020, 10, 978. DOI: 10.3390/nano10050978.
  • Peng, Z.; Zou, T. In-Vitro Degradation Behaviors of Composite Scaffolds Based on 1,4-Butadnediamine Modified Poly(Lactide-co-Glycolide) and Nanobioceramics. J. Macromol. Sci., Part B, Phys. 2019, 58, 505–517. DOI: 10.1080/00222348.2019.1593601.
  • Yi, M.; Zhou, Z.; Liu, W.; Huang, T.; Zhao, Y.; Chen, P.; Zhou, Z.; Wang, D.; Zhang, C.; Fang, J. In-Vitro Degradation Behaviors of Poly(L-Lactide-co-Glycolide-co-ε-Caprolactone) Microspheres. J. Macromol. Sci., Part B, Phys. 2021, 60, 521–529. DOI: 10.1080/00222348.2021.1876975.
  • Zhang, Q.; Zhou, Z.; Peng, C.; Huang, T.; Liu, W.; Liu, Q.; Zhou, H.; Wang, W.; Yan, H. Preparation and Properties of Novel Maleated Poly (D, L-Lactide-co-Glycolide) Porous Scaffolds for Tissue Engineering. J. Macromol. Sci., Part B, Phys. 2017, 56, 505–515. DOI: 10.1080/00222348.2017.1330132.
  • Zhou, Z.; Huang, H.; Huang, T.; Peng, C.; Zhou, H.; Liu, Q.; Zeng, W.; Liu, L.; Cao, D.; He, S.; et al. Synthesis and Characterization of Novel Maleated Poly(D,L-Lactide-co-Glycolide) by Direct Melt Copolymerization. Polym. Bull. 2015, 72, 1531–1543. DOI: 10.1007/s00289-015-1354-z.
  • Yang, Y.; Fang, J.; Liu, W.; Zhao, Y.; Huang, T.; Cui, J.; Zhou, Z. In-Vitro Degradation Behavior and Biological Properties of a Novel Maleated Poly (D, L-Lactide-co-Glycolide) for Biomedical Applications. J. Macromol. Sci. Part B Phys. 2019, 58, 209–218. DOI: 10.1080/00222348.2018.1479026.
  • Wu, W.; Zhou, Z. H.; Liu, W. J.; Zhao, Y. H.; Zhao, Y. M.; Huang, T. L.; Li, X. F.; Fang, J. J. Preparation and in-Vitro Degradation Behavior of Poly(L-Lactide-co-Glycolide-co-ε-Caprolactone) Terpolymer. J. Macromol. Sci., Part B, Phys. 2019, 58, 568–577. DOI: 10.1080/00222348.2019.1601809.
  • Gu, J.; Zhou, Z.; Huang, T.; Wu, W.; Liu, W.; Zhao, Y.; Chen, P.; Zhou, Z.; Wang, D.; Zhang, C.; et al. Preparation and Properties of Poly(D,L-Lactide-co-Glycolide-co-ε-Caprolactone)/1,4-Butanediamine Modified Poly(Lactide-co-Glycolide) Blend Porous Microspheres. J. Macromol. Sci., Part B, Phys. 2022, 61, 270–280. DOI: 10.1080/00222348.2021.2002457.
  • Zhang, Q.; Fang, J.; Liu, W.; Zhao, Y.; Huang, T.; Cui, J.; Yang, Y.; Zhou, Z. Synthesis and Characterization of Poly(D,L-Lactide-co-Glycolide) Modified by Maleic Anhydride and 1,4-Butanediamine. Int. J. Polym. Anal. Charact. 2018, 23, 474–482. DOI: 10.1080/1023666X.2018.1478618.
  • Kim, J. Y.; Cho, D.-W. Blended PCL/PLGA Scaffold Fabrication Using Multi-Head Deposition System. Microelectron. Eng. 2009, 86, 1447–1450. DOI: 10.1016/j.mee.2008.11.026.
  • Cui, J.; Zhou, Z.; Yang, Y.; Liu, W.; Zhao, Y.; Peng, C.; Huang, T.; Zhou, H.; Liu, L.; Zhang, Q. Synthesis, Characterization, and Degradation Behaviors of Poly(D,L-Lactide-co-Glycolide) Modified by Maleic Anhydride and Ethanediamine. Int. J. Polym. Anal. Charact. 2017, 22, 575–586. DOI: 10.1080/1023666X.2017.1344819.
  • Guo, M.; Zhou, Z.; Liu, W.; Huang, T.; Wu, W.; Duan, J.; Yi, M.; Zhang, C.; He, X.; Chen, J.; et al. Preparation and Characterization of Poly(Lactide-co-Glycolide-co-ε-Caprolactone)- 1,4-Butanediamine-Modified Poly(Lactide-co-Glycolide)/Nano-Biaoactive Glass-β-Tricalcium Phosphate Composite Scaffolds. J. Macromol. Sci., Part B, Phys. 2022, 61, 622–635. DOI: 10.1080/00222348.2022.2092344.
  • Ciardelli, G.; Chiono, V.; Vozzi, G.; Pracella, M.; Ahluwalia, A.; Barbani, N.; Cristallini, C.; Giusti, P. Blends of Poly-(ε-Caprolactone) and Polysaccharides in Tissue Engineering Applications. Biomacromolecules 2005, 6, 1961–1976. DOI: 10.1021/BM0500805.
  • Wu, W.; Fang, J. J.; Liu, W.; Zhao, Y. H.; Huang, T. L.; Zhao, Y. M.; Li, X. F.; Cui, J. L.; Yang, Y.; Zhou, Z. H. Preparation and Properties of BMPLGA/NBAG-β-TCP Composite Scaffold Materials. Int. J. Polym. Anal. Charact. 2018, 23, 710–720. DOI: 10.1080/1023666X.2018.1499275.
  • Ou, Y.; Wu, W.; Zhou, Z. In-Vitro Degradation Behaviors of Composite Scaffolds Based on Poly(Lactide-co-Glycolide-co-ε-Caprolactone), 1,4-Butanediamine Modified Poly(Lactide-co-Glycolide) and Bioceramics. J. Macromol. Sci., Part B, Phys. 2022, 61, 776–787. DOI: 10.1080/00222348.2022.2101972.
  • Xie, H.; Zhou, Z.; Liu, W.; Zhao, Y.; Huang, T.; Chen, P.; Zhou, Z.; Wang, D.; Duan, J.; Fang, J. Preparation and Characterization of Poly(L-Lactide-co-Glycolide-co-ε-Caprolactone)/Nano-Biaoactive Glass-Nano-β-Tricalcium Phosphate Composite Scaffolds. J. Macromol. Sci., Part B, Phys. 2020, 59, 415–425. DOI: 10.1080/00222348.2020.1735122.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.