175
Views
3
CrossRef citations to date
0
Altmetric
Articles

Adsorptive Removal of Methylene Blue Dye from Aqueous Solutions by Polyvinyl Alcohol/Activated Carbon Nanocomposite Hydrogels

, ORCID Icon, , &
Pages 1366-1394 | Received 29 Sep 2022, Accepted 29 Jan 2023, Published online: 09 Feb 2023

References

  • Srivastava, V. C.; Mall, I. D.; Mishra, I. M. Multicomponent Adsorption Study of Metal Ions onto Bagasse Fly Ash Using Taguchi’s Design of Experimental Methodology. Ind. Eng. Chem. Res. 2007, 46, 5697–5706. DOI: 10.1021/ie0609822.
  • Gupta, V. K.; Suhas. Application of Low-Cost Adsorbents for Dye Removal. J. Environ. Manage. 2009, 90, 2313–2342. DOI: 10.1016/j.jenvman.2008.11.017.
  • Nakahira, A.; Nishida, S.; Fukunishi, K. Synthesis of Magnetic Activated Carbons for Removal of Environmental Endocrine Disrupter Using Magnetic Vector. J. Ceram. Soc. Jpn. 2006, 114, 135–137. DOI: 10.2109/jcersj.114.135.
  • Murray, R. L. Understanding Radioactive Waste, 3rd ed.; Battelle Press: Columbus, 1989.
  • Senthilkumaar, S.; Varadarajan, P. R.; Porkodi, K.; Subbhuraam, C. V. Adsorption of Methylene Blue onto Jute Fiber Carbon: Kinetics and Equilibrium Studies. J. Colloid Interface Sci. 2005, 284, 78–82. DOI: 10.1016/j.jcis.2004.09.027.
  • Kaşgöz, H.; Durmus, A. Dye Removal by a Novel Hydrogel-Clay Nanocomposite with Enhanced Swelling Properties. Polym. Adv. Technol. 2008, 19, 838–845. DOI: 10.1002/pat.1045.
  • Srinivasan, A.; Viraraghavan, T. Decolorization of Dye Wastewaters by Biosorbents: A Review. J. Environ. Manage. 2010, 91, 1915–1929. DOI: 10.1016/j.jenvman.2010.05.003.
  • Mohan, D.; Sarswat, A.; Singh, V. K.; Alexandre-Franco, M.; Pittman, C. U., Jr. Development of Magnetic Activated Carbon from Almond Shells for Trinitrophenol Removal from Water. Chem. Eng. J. 2011, 172, 1111–1125. DOI: 10.1016/j.cej.2011.06.054.
  • Ewecharoen, A.; Thiravetyan, P.; Wendel, E.; Bertagnolli, H. Nickel Adsorption by Sodium Polyacrylate-Grafted Activated Carbon. J. Hazard Mater. 2009, 171, 335–339. DOI: 10.1016/j.jhazmat.2009.06.008.
  • Yahya, M. A.; Al-Qodah, Z.; Ngah, C. W. Z. Agricultural Bio-Waste Materials as Potential Sustainable Precursors Used for Activated Carbon Production: A Review. Renew. Sust. Energy Rev. 2015, 46, 218–235. DOI: 10.1016/j.rser.2015.02.051.
  • Sirousazar, M.; Kokabi, M.; Hassan, Z. M.; Bahramian, A. R. Nanoporous Nanocomposite Hydrogels Composed of Polyvinyl Alcohol and Na-Montmorillonite. J. Macromol. Sci. B, Phys. 2012, 51, 1583–1595. DOI: 10.1080/00222348.2012.656010.
  • Sharma, G.; Thakur, B.; Naushad, M.; Kumar, A.; Stadler, F. J.; Alfadul, S. M.; Mola, G. T. Applications of Nanocomposite Hydrogels for Biomedical Engineering and Environmental Protection. Environ. Chem. Lett. 2018, 16, 113–146. DOI: 10.1007/s10311-017-0671-x.
  • Mahinroosta, M.; Farsangi, Z. J.; Allahverdi, A.; Shakoori, Z. Hydrogels as Intelligent Materials: A Brief Review of Synthesis, Properties and Applications. Mater. Today Chem. 2018, 8, 42–55. DOI: 10.1016/j.mtchem.2018.02.004.
  • Sirousazar, M.; Kokabi, M.; Hassan, Z. M. Swelling Behavior and Structural Characteristics of Polyvinyl Alcohol/Montmorillonite Nanocomposite Hydrogels. J. Appl. Polym. Sci. 2012, 123, 50–58. DOI: 10.1002/app.34437.
  • Yang, W.; Fortunati, E.; Bertoglio, F.; Owczarek, J. S.; Bruni, G.; Kozanecki, M.; Kenny, J. M.; Torre, L.; Visai, L.; Puglia, D. Polyvinyl Alcohol/Chitosan Hydrogels with Enhanced Antioxidant and Antibacterial Properties Induced by Lignin Nanoparticles. Carbohydr. Polym. 2018, 181, 275–284. DOI: 10.1016/j.carbpol.2017.10.084.
  • Rezazadeh, B.; Sirousazar, M.; Abbasi-Chianeh, V.; Kheiri, F. Polymer-Clay Nanocomposite Hydrogels for Molecular Irrigation Application. J. Appl. Polym. Sci. 2020, 137, 48631. DOI: 10.1002/app.48631.
  • Rafati, Z.; Sirousazar, M.; Hassan, Z. M.; Kheiri, F. Honey-Loaded Egg White/Poly(Vinyl Alcohol)/Clay Bionanocomposite Hydrogel Wound Dressings: In Vitro and in Vivo Evaluations. J. Polym. Environ. 2020, 28, 32–46. DOI: 10.1007/s10924-019-01586-w.
  • Hameed, B. H.; Salman, J. M.; Ahmad, A. L. Adsorption Isotherm and Kinetic Modeling of 2,4-D Pesticide on Activated Carbon Derived from Date Stones. J. Hazard Mater. 2009, 163, 121–126. DOI: 10.1016/j.jhazmat.2008.06.069.
  • Shaabani, Y.; Sirousazar, M.; Kheiri, F. Crosslinked Swellable Clay/Egg White Bionanocomposites. Appl. Clay Sci. 2016, 126, 287–296. DOI: 10.1016/j.clay.2016.03.027.
  • Roufegari-Nejhad, E.; Sirousazar, M.; Abbasi-Chiyaneh, V.; Kheiri, F. Removal of Methylene Blue from Aqueous Solutions Using Poly(Vinyl Alcohol)/Montmorillonite Nanocomposite Hydrogels: Taguchi Optimization. J. Polym. Environ. 2019, 27, 2239–2249. DOI: 10.1007/s10924-019-01514-y.
  • Azady, M. A. R.; Alam, M. S.; Paul, S. C.; Rahaman, M. S.; Sultana, S.; Hasnine, S. M. M.; Ahmed, T.; Gafur, M. A. Preparation and Characterization of Gamma Radiation Assisted Poly-Vinyl Alcohol/Acrylic Acid/Poly-4-Styrene Sulphonic Acid Based Hydrogel: Application for Textile Dye Removal. J. Polym. Environ. 2021, 29, 520–537. DOI: 10.1007/s10924-020-01897-3.
  • Yu, Y.; Zhao, X.; Ye, L. Poly(Vinyl Alcohol)/Graphene Oxide Nanocomposite Hydrogel with Catalytic Activity: The Removal Behavior and Dual Adsorption/Catalytic Degradation Mechanism for Dye Wastewater. Polym. Int. 2021, 70, 331–340. DOI: 10.1002/pi.6139.
  • Kongseng, P.; Amornpitoksuk, P.; Chantarak, S. Development of Multifunctional Hydrogel Composite Based on Poly(Vinyl Alcohol-g-Acrylamide) for Removal and Photocatalytic Degradation of Organic Dyes. React. Funct. Polym. 2022, 172, 105207. DOI: 10.1016/j.reactfunctpolym.2022.105207.
  • Chen, X. Modeling of Experimental Adsorption Isotherm Data. Information 2015, 6, 14–22. DOI: 10.3390/info6010014.
  • Vijayaraghavan, K.; Padmesh, T. V. N.; Palanivelu, K.; Velan, M. Biosorption of Nickel(II) Ions onto Sargassum Wightii: Application of Two-Parameter and Three-Parameter Isotherm Models. J. Hazard Mater. 2006, 133, 304–308. DOI: 10.1016/j.jhazmat.2005.10.016.
  • Foroughi-Dahr, M.; Abolghasemi, H.; Esmaili, M.; Shojamoradi, A.; Fatoorehchi, H. Adsorption Characteristics of Congo Red from Aqueous Solution onto Tea Waste. Chem. Eng. Commun. 2015, 202, 181–193. DOI: 10.1080/00986445.2013.836633.
  • Liu, Y.; Yu, Q.; Liu, X.; Liu, R. Adsorption Characteristics of Methyl Blue onto Magnetic Mn0.5Co0.5Fe2O4 Nanoparticles Prepared via a Rapid Combustion Process. Environ. Prog. Sustain. Energy 2019, 38, S277–S287. DOI: 10.1002/ep.13009.
  • Delir, S.; Sirousazar, M.; Kheiri, F. Clindamycin Releasing Bionanocomposite Hydrogels as Potential Wound Dressings for the Treatment of Infected Wounds. J. Biomater. Sci. Polym. Ed. 2020, 31, 1489–1514. DOI: 10.1080/09205063.2020.1764161.
  • Zhao, Y.; Cho, C.-W.; Cui, L.; Wei, W.; Cai, J.; Wu, G.; Yun, Y.-S. Adsorptive Removal of Endocrine-Disrupting Compounds and a Pharmaceutical Using Activated Charcoal from Aqueous Solution: Kinetics, Equilibrium, and Mechanism Studies. Environ. Sci. Pollut. Res. Int. 2019, 26, 33897–33905. DOI: 10.1007/s11356-018-2617-7.
  • Xu, Z.; Zhang, T.; Yuan, Z.; Zhang, D.; Sun, Z.; Huang, Y.; Chen, W.; Tian, D.; Deng, H.; Zhou, Y. Fabrication of Cotton Textile Waste-Based Magnetic Activated Carbon Using FeCl3 Activation by the Box–Behnken Design: Optimization and Characteristics. RSC Adv. 2018, 8, 38081–38090. DOI: 10.1039/C8RA06253F.
  • Xie, Z.; Guan, W.; Ji, F.; Song, Z.; Zhao, Y. Production of Biologically Activated Carbon from Orange Peel and Landfill Leachate Subsequent Treatment Technology. J. Chem. 2014, 2014, 491912. DOI: 10.1155/2014/491912.
  • Saafie, N.; Samsudin, M. F. R.; Sufian, S.; Ramli, R. M. Enhancement of the Activated Carbon over Methylene Blue Removal Efficiency via Alkali-Acid Treatment. AIP Conf. Proc. 2019, 2124, 020046. DOI: 10.1063/1.5117106.
  • Tang, C. M.; Tian, Y. H.; Hsu, S. H. Poly(Vinyl Alcohol) Nanocomposites Reinforced with Bamboo Charcoal Nanoparticles: Mineralization Behavior and Characterization. Materials (Basel) 2015, 8, 4895–4911. DOI: 10.3390/ma8084895.
  • Juby, K. A.; Dwivedi, C.; Kumar, M.; Kota, S.; Misra, H. S.; Bajaj, P. N. Silver Nanoparticle-Loaded PVA/Gum Acacia Hydrogel: Synthesis, Characterization and Antibacterial Study. Carbohydr. Polym. 2012, 89, 906–913. DOI: 10.1016/j.carbpol.2012.04.033.
  • Părpăriţă, E.; Cheaburu, C. N.; Pațachia, S. F.; Vasile, C. Polyvinyl Alcohol/Chitosan/Montmorillonite Nanocomposites Preparation by Freeze/Thaw Cycles and Characterization. Acta Chem. IASI 2014, 22, 75–96. DOI: 10.2478/achi-2014-0008.
  • Coasne, B.; Gubbins, K. E.; Pellenq, R. J. M. A Grand Canonical Monte Carlo Study of Adsorption and Capillary Phenomena in Nanopores of Various Morphologies and Topologies: Testing the BET and BJH Characterization Methods. Part. Part. Syst. Charact. 2004, 21, 149–160. DOI: 10.1002/ppsc.200400928.
  • Al-Qudah, Y. H. F.; Mahmoud, G. A.; Abdel Khalek, M. A. Characterization of Some Hydrogels Used in Water Purification: Correlation of Swelling and Free-Volume Properties. J. Radiat. Res. Appl. Sci. 2014, 7, 135–145. DOI: 10.1016/j.jrras.2013.12.008.
  • Bahrami, S. B.; Kordestani, S. S.; Mirzadeh, H.; Mansouri, P. Poly(Vinyl Alcohol) - Chitosan Blends: Preparation, Mechanical and Physical Properties. Iran. Polym. J. 2003, 12, 139–146.
  • Morita, R.; Honda, R.; Takahashi, Y. Development of Oral Controlled Release Preparations, a PVA Swelling Controlled Release System (SCRS): I. Design of SCRS and Its Release Controlling Factor. J. Control. Release 2000, 63, 297–304. DOI: 10.1016/S0168-3659(99)00203-5.
  • Gulenoor, F.; Poddar, P.; Bossunia, M. D. I. T.; Dafader, N. C.; Chowdhury, S. A. M. γ-Irradiated Polyvinyl Alcohol (PVA) and Citric Acid Blend Hydrogels: Swelling and Absorption Properties. Chem. Sci. J. 2016, 7, 1000125. DOI: 10.4172/2150-3494.1000125.
  • Khodamoradi, N.; Babaeipour, V.; Sirousazar, M. Bacterial Cellulose/Montmorillonite Bionanocomposites Prepared by Immersion and In-Situ Methods: Structural, Mechanical, Thermal, Swelling and Dehydration Properties. Cellulose 2019, 26, 7847–7861. DOI: 10.1007/s10570-019-02666-9.
  • Benhouria, A.; Islam, M. A.; Zaghouane-Boudiaf, H.; Boutahala, M.; Hameed, B. H. Calcium Alginate–Bentonite–Activated Carbon Composite Beads as Highly Effective Adsorbent for Methylene Blue. Chem. Eng. J. 2015, 270, 621–630. DOI: 10.1016/j.cej.2015.02.030.
  • Lorenc-Grabowska, E.; Gryglewicz, G. Adsorption Characteristics of Congo Red on Coal-Based Mesoporous Activated Carbon. Dyes Pigm. 2007, 74, 34–40. DOI: 10.1016/j.dyepig.2006.01.027.
  • Sandeman, S. R.; Gun’ko, V. M.; Bakalinska, O. M.; Howell, C. A.; Zheng, Y.; Kartel, M. T.; Phillips, G. J.; Mikhalovsky, S. V. Adsorption of Anionic and Cationic Dyes by Activated Carbons, PVA Hydrogels, and PVA/AC Composite. J. Colloid Interface Sci. 2011, 358, 582–592. DOI: 10.1016/j.jcis.2011.02.031.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.