143
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Morphological Transition and Associated Conductivity Shift in Emeraldine Polyaniline: Unraveling the Urbach Tail Analysis

, , , , &
Pages 1-19 | Received 23 Jul 2023, Accepted 03 Aug 2023, Published online: 23 Aug 2023

References

  • Palaniappan, S.; John, A. Polyaniline Materials by Emulsion Polymerization Pathway. Prog. Polymer Sci. 2008, 33, 732–758. DOI: 10.1016/j.progpolymsci.2008.02.002.
  • Pooja Kumar, A.; Prasher, P.; Mudila, H. Factors Affecting the Electrical Conductivity of Conducting Polymers. Carbon Lett., 2023, 33, 307–324. DOI: 10.1007/s42823-022-00443-6.
  • Shirakawa, H.; Louis, E. J.; MacDiarmid, A. G.; Chiang, C. K.; Heeger, A. J. Synthesis of Electrically Conducting Organic Polymers: Halogen Derivatives of Polyacetylene, (CH)x. J. Chem. Soc., Chem. Commun. 1977, 16, 578. DOI: 10.1039/c39770000578.
  • Ito, T.; Shirakawa, H.; Ikeda, S. Simultaneous Polymerization and Formation of Polyacetylene Film on the Surface of Concentrated Soluble Ziegler-Type Catalyst Solution. J. Polym. Sci. Polym. Chem. Ed. 1974, 12, 11–20. DOI: 10.1002/pol.1974.170120102.
  • Chiang, C. K.; Fincher, C. R.; Park, Y. W.; Heeger, A. J.; Shirakawa, H.; Louis, E. J.; Gau, S. C.; MacDiarmid, A. G. Electrical Conductivity in Doped Polyacetylene. Phys. Rev. Lett. 1978, 40, 1472–1472. DOI: 10.1103/PhysRevLett.40.1472.
  • Chandrasekhar, P. Conducting Polymers, Fundamentals and Applications: Including Carbon Nanotubes and Graphene; Springer: New York, 2018. DOI: 10.1007/978-3-319-69378-1.
  • Wessling, B. New Insight into Organic Metal Polyaniline Morphology and Structure. Polymers 2010, 2, 786–798. DOI: 10.3390/polym2040786.
  • Khalid, M.; Honorato, A. M. B.; Varela, H. Polyaniline: Synthesis Methods, Doping and Conduction Mechanism. In Polyaniline - From Synthesis to Practical Applications; IntechOpen: London, 2018. DOI: 10.5772/intechopen.79089.
  • Skotheim, T. A.; Reynolds, J. Conjugated Polymers: Theory, Synthesis, Properties, and Characterization, 1st ed.; CRC Press: Boca Raton, 2006. DOI: 10.1201/9781420043594.
  • MacDiarmid, A. G.; Epstein, A. J. The Concept of Secondary Doping as Applied to Polyaniline. Synth. Met 1994, 65, 103–116. DOI: 10.1016/0379-6779(94)90171-6.
  • Bednarczyk, K.; Matysiak, W.; Tański, T.; Janeczek, H.; Schab-Balcerzak, E.; Libera, M. Effect of Polyaniline Content and Protonating Dopants on Electroconductive Composites. Sci Rep 2021, 11, 7487. DOI: 10.1038/s41598-021-86950-4.
  • Chauhan, N. P. S.; Mozafari, M.; Chauhan, N. P. S. Polyaniline: An Introduction and Overview. In Fundamentals and Emerging Applications of Polyaniline; Mozafari , Ed., Elsevier Inc.: Amsterdam, 2019; pp. 1–15. DOI: 10.1016/B978-0-12-817915-4.00001-4.
  • Neelgund, G. M.; Oki, A. A Facile Method for the Synthesis of Polyaniline Nanospheres and the Effect of Doping on Their Electrical Conductivity. Polym. Int. 2011, 60, 1291–1295. DOI: 10.1002/pi.3068.
  • Gospodinova, N.; Terlemezyan, L. Conducting Polymers Prepared by Oxidative Polymerization: Polyaniline. Prog. Polymer Sci. 1998, 23, 1443–1484. DOI: 10.1016/S0079-6700(98)00008-2.
  • Hatchett, D. W.; Josowicz, M.; Janata, J. Acid Doping of Polyaniline: Spectroscopic and Electrochemical Studies. J. Phys. Chem. B 1999, 103, 10992–10998. DOI: 10.1021/jp991110z.
  • Kim, Y.-G.; Nguyen, H.-L.; Kinlen, P. Secondary Dopants of Electrically Conducting Polyanilines. Polymers 2021, 13, 2904. DOI: 10.3390/polym13172904.
  • Trchová, M.; Morávková, Z.; Šeděnková, I.; Stejskal, J. Spectroscopy of Thin Polyaniline Films Deposited during Chemical Oxidation of Aniline. Chem. Pap. 2012, 66, 415–445. DOI: 10.2478/s11696-012-0142-6.
  • Silva, C. H. B.; Galiote, N. A.; Huguenin, F.; Teixeira-Neto, É.; Constantino, V. R. L.; Temperini, M. L. A. Spectroscopic, Morphological and Electrochromic Characterization of Layer-by-Layer Hybrid Films of Polyaniline and Hexaniobate Nanoscrolls. J. Mater. Chem. 2012, 22, 14052. DOI: 10.1039/c2jm31531a.
  • Tzou, K.; Gregory, R. V. A Method to Prepare Soluble Polyaniline Salt Solutions—in Situ Doping of PANI Base with Organic Dopants in Polar Solvents. Synth. Met. 1993, 53, 365–377. DOI: 10.1016/0379-6779(93)91106-C.
  • Bhadra, S.; Khastgir, D.; Singha, N. K.; Lee, J. H. Progress in Preparation, Processing and Applications of Polyaniline. Prog. Polymer Sci. 2009, 34, 783–810. DOI: 10.1016/j.progpolymsci.2009.04.003.
  • Nordén, B. Advanced Information - The Nobel Prize in Chemistry 2000. 2000https://www.nobelprize.org/prizes/chemistry/2000/summary/.
  • Tauc, J.; Grigorovici, R.; Vancu, A. Optical Properties and Electronic Structure of Amorphous Germanium. Phys. Stat. Sol. (b) 1966, 15, 627–637. DOI: 10.1002/pssb.19660150224.
  • Makuła, P.; Pacia, M.; Macyk, W. How to Correctly Determine the Band Gap Energy of Modified Semiconductor Photocatalysts Based on UV–Vis Spectra. J. Phys. Chem. Lett. 2018, 9, 6814–6817. DOI: 10.1021/acs.jpclett.8b02892.
  • Stafström, S.; Brédas, J. L.; Epstein, A. J.; Woo, H. S.; Tanner, D. B.; Huang, W. S.; MacDiarmid, A. G. Polaron Lattice in Highly Conducting Polyaniline: Theoretical and Optical Studies. Phys. Rev. Lett. 1987, 59, 1464–1467. DOI: 10.1103/PhysRevLett.59.1464.
  • Urbach, F. The Long-Wavelength Edge of Photographic Sensitivity and of the Electronic Absorption of Solids. Phys. Rev. 1953, 92, 1324–1324. DOI: 10.1103/PhysRev.92.1324.
  • Banerjee, S.; Kumar, A. Swift Heavy Ion Irradiation Induced Modifications in the Optical Band Gap and Urbach’s Tail in Polyaniline Nanofibers. Nucl. Instrum. Methods Phys. Res., Sect. B 2011, 269, 2798–2806. DOI: 10.1016/j.nimb.2011.09.004.
  • John, J.; Sivaraman, S.; Jaylekshmi, S. Urbach Tail Analysis on the Defect States of Polypyrrole Thin Films Prepared by AC Plasma Polymerization. e-Polymers 2010, 10, 011. DOI: 10.1515/epoly.2010.10.1.87.
  • Palaniappan, S. Chemical and Electrochemical Polymerization of Aniline Using Tartaric Acid. Eur. Polym. J. 2001, 37, 975–981. DOI: 10.1016/S0014-3057(00)00207-X.
  • Bhadra, S.; Singha, N. K.; Khastgir, D. Polyaniline by New Miniemulsion Polymerization and the Effect of Reducing Agent on Conductivity. Synth. Met. 2006, 156, 1148–1154. DOI: 10.1016/j.synthmet.2006.08.002.
  • Trân, T. H.; Debarnot, D.; Richaud, E. Thermal Oxidative Stability of Polyanilines. Polym. Test 2020, 81, 106187. DOI: 10.1016/j.polymertesting.2019.106187.
  • Chevalier, J. W.; Bergeron, J. Y.; Dao, L. H. Synthesis, Characterization, and Properties of Poly(N-Alkylanilines). Macromolecules 1992, 25, 3325–3331. DOI: 10.1021/ma00039a001.
  • Li, G.-R.; Feng, Z.-P.; Zhong, J.-H.; Wang, Z.-L.; Tong, Y.-X. Electrochemical Synthesis of Polyaniline Nanobelts with Predominant Electrochemical Performances. Macromolecules 2010, 43, 2178–2183. DOI: 10.1021/ma902317k.
  • Dhivya, C.; Vandarkuzhali, S. A. A.; Radha, N. Antimicrobial Activities of Nanostructured Polyanilines Doped with Aromatic Nitro Compounds. Arab. J. Chem. 2019, 12, 3785–3798. DOI: 10.1016/j.arabjc.2015.12.005.
  • Zeghioud, H.; Lamouri, S.; Mahmoud, Y.; Hadj-Ali, T. Preparation and Characterization of a New Polyaniline Salt with Good Conductivity and Great Solubility in Dimethyl Sulfoxyde. J Serb Chem. Soc. 2015, 80, 1435–1448. DOI: 10.2298/JSC150305064Z.
  • Bhadra, S.; Khastgir, D. Determination of Crystal Structure of Polyaniline and Substituted Polyanilines through Powder X-Ray Diffraction Analysis. Polym. Test. 2008, 27, 851–857. DOI: 10.1016/j.polymertesting.2008.07.002.
  • Łużny, W.; Bańka, E. Relations between the Structure and Electric Conductivity of Polyaniline Protonated with Camphorsulfonic Acid. Macromolecules 2000, 33, 425–429. DOI: 10.1021/ma9913663.
  • McCall, R. P.; Ginder, J. M.; Roe, M. G.; Asturias, G. E.; Scherr, E. M.; MacDiarmid, A. G.; Epstein, A. J. Massive Polarons in Large-Energy-Gap Polymers. Phys. Rev. B Condens. Matter 1989, 39, 10174–10178. DOI: 10.1103/PhysRevB.39.10174.
  • Chen, Y.; Xu, C.; Xu, B.; Mao, Z.; Li, J.-A.; Yang, Z.; Peethani, N. R.; Liu, C.; Shi, G.; Gu, F. L.; et al. Chirality-Activated Mechanoluminescence from Aggregation-Induced Emission Enantiomers with High Contrast Mechanochromism and Force-Induced Delayed Fluorescence. Mater. Chem. Front. 2019, 3, 1800–1806. DOI: 10.1039/C9QM00312F.
  • Jagodzinski, H.; Klug, H. P.; Alexander, U. L. E. X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials. Ber. Bunsen. Ges. Phys. Chem. 1975, 79, 553–553. DOI: 10.1002/bbpc.19750790622.
  • Pouget, J. P.; Jozefowicz, M. E.; Epstein, A. J.; Tang, X.; MacDiarmid, A. G. X-ray Structure of Polyaniline. Macromolecules 1991, 24, 779–789. DOI: 10.1021/ma00003a022.
  • Kittur, F. S.; Harish Prashanth, K. V.; Udaya Sankar, K.; Tharanathan, R. N. Characterization of Chitin, Chitosan and Their Carboxymethyl Derivatives by Differential Scanning Calorimetry. Carbohydr. Polym. 2002, 49, 185–193. DOI: 10.1016/S0144-8617(01)00320-4.
  • Amrutha, S. R.; Jayakannan, M. Probing the π-Stacking Induced Molecular Aggregation in π-Conjugated Polymers, Oligomers, and Their Blends of p -Phenylenevinylenes. J. Phys. Chem. B 2008, 112, 1119–1129. DOI: 10.1021/jp077404z.
  • Hatakeyama, T.; Nakamura, K.; Hatakeyama, H. Determination of Bound Water Content in Polymers by DTA, DSC and TG. Thermochim. Acta 1988, 123, 153–161. DOI: 10.1016/0040-6031(88)80018-2.
  • Kang, Q.; Takehara, H.; Ichiki, T. A Polyaniline/Polyvinyl Acetate Composite Film Electrode for Highly Sensitive Electrochemical Sensing of pH. Synth. Met. 2023, 297, 117380. DOI: 10.1016/j.synthmet.2023.117380.
  • Boara, G.; Sparpaglione, M. Synthesis of Polyanilines with High Electrical Conductivity. Synth. Met. 1995, 72, 135–140. DOI: 10.1016/0379-6779(94)02337-X.
  • Yue, J.; Epstein, A. J.; Zhong, Z.; Gallagher, P. K.; Macdiarmid, A. G. Thermal Stabilities of Polyanilines. Synth. Met. 1991, 41, 765–768. DOI: 10.1016/0379-6779(91)91180-I.
  • Rahman, M. S.; Pal, U.; Choudhury, A. K.; Maiti, S. New Conducting Polymers, 3. Doping, Stability, Electrical, and Optical Characteristics of Poly-(P-Phenylphosphoethynediyl). Colloid Polym. Sci. 1991, 269, 576–582. DOI: 10.1007/BF00659911.
  • Han, C.-C.; Hong, S.-P.; Yang, K.-F.; Bai, M.-Y.; Lu, C.-H.; Huang, C.-S. Highly Conductive New Aniline Copolymers Containing Butylthio Substituent. Macromolecules 2001, 34, 587–591. DOI: 10.1021/ma001664w.
  • Ansari, S. P.; Anis, A. 18 - Conducting Polymer Hydrogels. In Woodhead Publishing Series in Biomaterials, Polymeric Gels; Kunal Pal, Indranil Banerjee, Eds.; Woodhead Publishing: Cambridge, 2018, pp. 467–486. DOI: 10.1016/B978-0-08-102179-8.00018-1.
  • Zare, E. N.; Makvandi, P.; Ashtari, B.; Rossi, F.; Motahari, A.; Perale, G. Progress in Conductive Polyaniline-Based Nanocomposites for Biomedical Applications: A Review. J. Med. Chem. 2020, 63, 1–22. DOI: 10.1021/acs.jmedchem.9b00803.
  • Shishov, M. A.; Moshnikov, V. A.; Sapurina, I. Y. Nanostructures of Oligoaniline and Polyaniline and Their Properties. Glass Phys. Chem. 2011, 37, 106–110. DOI: 10.1134/S1087659611010135.
  • Sapurina, I.; Stejskal, J. The Mechanism of the Oxidative Polymerization of Aniline and the Formation of Supramolecular Polyaniline Structures. Polym. Int. 2008, 57, 1295–1325. DOI: 10.1002/pi.2476.
  • Soni, A.; Pandey, C. M.; Solanki, S.; Sumana, G. Synthesis of 3D-Coral like Polyaniline Nanostructures Using Reactive Oxide Templates and Their High Performance for Ultrasensitive Detection of Blood Cancer. Sens. Actuators B Chem. 2019, 281, 634–642. DOI: 10.1016/j.snb.2018.10.126.
  • Lyu, W.; Yu, M.; Feng, J.; Yan, W. Facile Synthesis of Coral-like Hierarchical Polyaniline Micro/Nanostructures with Enhanced Supercapacitance and Adsorption Performance. Polymer 2019, 162, 130–138. DOI: 10.1016/j.polymer.2018.12.037.
  • Aleshin, A. N. Quasi-One-Dimensional Transport in Conducting Polymer Nanowires. Phys. Solid State 2007, 49, 2015–2033. DOI: 10.1134/S1063783407110017.
  • Xu, H.-S.; Cheng, Z.-Y.; Zhang, Q. M.; Wang, P.-C.; Macdiarmid, A. G. Conduction Behavior of Doped Polyaniline Films at High Current Density Regime. J. Polym. Sci. B Polym. Phys. 1999, 37, 2845–2850. DOI: 10.1002/(SICI)1099-0488(19991015)37:20<2845::AID-POLB4>3.0.CO;2-W.
  • Babu, V. J.; Vempati, S.; Ramakrishna, S. Conducting Polyaniline-Electrical Charge Transportation. MSA 2013, 04, 1–10. DOI: 10.4236/msa.2013.41001.
  • Cao, Y.; Smith, P.; Heeger, A. J. Counter-Ion Induced Processibility of Conducting Polyaniline. Synth. Met. 1993, 57, 3514–3519. DOI: 10.1016/0379-6779(93)90468-C.
  • Stejskal, J.; Gilbert, R. G. Polyaniline. Preparation of a Conducting Polymer: (IUPAC Technical Report). Pure Appl. Chem. 2002, 74, 857–867. DOI: 10.1351/pac200274050857.
  • Saravanan, S.; Joseph Mathai, C.; Anantharaman, M. R.; Venkatachalam, S.; Prabhakaran, P. V. Investigations on the Electrical and Structural Properties of Polyaniline Doped with Camphor Sulphonic Acid. J. Phys. Chem. Solids 2006, 67, 1496–1501. DOI: 10.1016/j.jpcs.2006.01.100.
  • Kapil, A.; Taunk, M.; Chand, S. Preparation and Charge Transport Studies of Chemically Synthesized Polyaniline. J. Mater. Sci.: Mater. Electron. 2010, 21, 399–404. DOI: 10.1007/s10854-009-9931-2.
  • Olayo, M. G.; Cruz, G. J.; López, S.; Morales, J.; Olayo, R. Conductivity and Activation Energy in Polymers Synthesized by Plasmas of Thiophene. J. Mex. Chem. Soc. 2019, 54, 18–23. DOI: 10.29356/jmcs.v54i1.960.
  • Madan, A.; Shaw, M. P. The Physics and Applications of Amorphous Semiconductors; Elsevier Science: Saint Louis, 1988.
  • Nath, C.; Kumar, A. Doping Level Dependent Space Charge Limited Conduction in Polyaniline Nanoparticles. J. Appl. Phys. 2012, 112, 093704. DOI: 10.1063/1.4763362.
  • Fröhlich, H. Electronic Processes in Ionic Crystals. Nature 1949, 164, 377–377. DOI: 10.1038/164377a0.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.