69
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Enhanced Flowability and Slurry Characteristics of Limestone-water Suspensions Through the Integration of Coarse Particles and a Natural Additive

, &
Pages 711-731 | Received 18 Sep 2023, Accepted 07 Nov 2023, Published online: 27 Nov 2023

References

  • Charles, M. E.; Charles, R. A. The Use of Heavy Media in the Pipeline Transport of Particulate Solids. Adv. Solid–Liquid Flow Pipes Appl. 1971, 187–197. DOI: 10.1016/B978-0-08-015767-2.50015-6.
  • Shook, C. A.; Roco, M. C. Basic Concepts for Single-Phase Fluids and Particles. Slurry Flow (Principles and Practice); Butterworth-Heinemann: Boston, 1991; pp 1–25.
  • Cui, J.; Fang, Y.; Xu, G.; Wu, C.; Liu, S.; Chen, S.; Liu, F. Transportation Performance of Large-Sized Pebbles in Slurry Circulation System: A Laboratory Study. Arab. J. Sci. Eng. 2021, 46, 10519–10539. DOI: 10.1007/s13369-021-05394-0.
  • Brent, G. F.; Allen, D. J.; Eichler, B. R.; Petrie, J. G.; Mann, J. P.; Haynes, B. S. Mineral Carbonation as the Core of an Industrial Symbiosis for Energy-Intensive Minerals Conversion. J. Ind. Ecol. 2012, 16, 94–104. DOI: 10.1111/j.1530-9290.2011.00368.x.
  • Bartosik, A. Simulation and Experiments of Axially-Symmetrical Flow of Fine-and Coarse- Dispersive Slurry in Delivery Pipes. Monography 2009, 11, 1–257.
  • Chhabra, R. P.; Richardson, J. F. Non-Newtonian Flow in the Process Industries: Fundamentals and Engineering Applications; Butterworth-Heinemann: Oxford, 1999.
  • Liu, H.; Round, G. F. Freight Pipelines: Proceedings of the 6th International Symposium on Freight Pipelines; CRC Press: New York, 1990.
  • Kembłowski, Z.; Warszawa, P. W. T. Non-Newtonian Fluid Rheometry; Scitech Publications: Warsaw, Poland, 1973.
  • Joshi, T.; Parkash, O.; Krishan, G. Numerical Investigation of Slurry Pressure Drop at Different Pipe Roughness in a Straight Pipe Using CFD. Arab. J. Sci. Eng. 2022, 47, 15391–15414. DOI: 10.1007/s13369-022-06583-1.
  • Rao, N. D.; Thatoi, D. N.; Biswal, S. K. Rheological Study and Numerical Analysis of High Concentration Iron Ore Slurry Pipeline Transportation. Mater. Today: Proc. 2020, 22, 3197–3202. DOI: 10.1016/j.matpr.2020.03.457.
  • Ahmed, A.; Elkatatny, S.; Ali, A.; Mahmoud, M.; Abdulraheem, A. New Model for Pore Pressure Prediction While Drilling Using Artificial Neural Networks. Arab. J. Sci. Eng. 2019, 44, 6079–6088. DOI: 10.1007/s13369-018-3574-7.
  • Sun, B.; Zhu, S.; Yang, L.; Liu, Q.; Zhang, C.; Zhang, J. p Experimental and Numerical Investigation of Flow Measurement Mechanism and Hydraulic Performance on Curved Flume in Rectangular Channel. Arab. J. Sci. Eng. 2021, 46, 4409–4420. DOI: 10.1007/s13369-020-04949-x.
  • Singh, H.; Kumar, S.; Mohapatra, S. K. Modeling of Solid-Liquid Flow inside Conical di-Verging Sections Using Computational Fluid Dynamics Approach. Int. J. Mech. Sci. 2020, 186, 105909. DOI: 10.1016/j.ijmecsci.2020.105909.
  • Pradhan, A. R.; Kumar, S.; Singh, H.; Singh, G.; Saptoro, A.; Kumar, P. Flow Modelling and Energy Consumption of a Hydrotransportation System Possessing Variable Flow Bound-Aries. Chem. Eng. Res. Des. 2022, 188, 988–1010. DOI: 10.1016/j.cherd.2022.10.043.
  • Wan, C.; Xiao, S.; Zhou, D.; Zhu, H.; Bao, Y.; Kakanda, K.; Han, Z. Numerical Simulation on Transport Behavior of Gradated Coarse Particles in Deep-Sea Vertical Pipe Transportation. Phys. Fluids 2023, 35, 1–16. DOI: 10.1063/5.0146329.
  • Ren, W. L.; Zhang, X. H.; Zhang, Y.; Li, P.; Lu, X. B. Investigation of Particle Size Impact on Dense Particulate Flows in a Vertical Pipe. Phys. Fluids 2023, 35, 1–15. DOI: 10.1063/5.0157609.
  • Pradhan, A. R.; Kumar, S.; Kumar, S.; Singh, H.; Kumar, K.; Singh, G. Prediction of Head Loss for Fly Ash-Water Slurry Flow through 90° Bend Pipe Using Computational Fluid Dynamics. Mater. Today: Proc. 2022, 56, 710–716. DOI: 10.1016/j.matpr.2022.01.197.
  • Sontti, S. G.; Sadeghi, M.; Zhou, K.; Zheng, E.; Zhang, X. Computational Fluid Dynamics Investigation of Bitumen Residues in Oil Sands Tailings Transport in an Industrial Horizontal Pipe. Phys. Fluids 2023, 35, 1–20. DOI: 10.1063/5.0132129.
  • Kou, L.; Zhao, J.; Miao, R.; Lian, F. Experimental Study on Dynamic Mechanical Characteristics of Mud Slurry Penetrating into Excavation Surface of Large Diameter Slurry Shield. Arab. J. Sci. Eng. 2022, 47, 13139–13150. DOI: 10.1007/s13369-022-06761-1.
  • Mastalska-Popławska, J.; Izak, P.; Wójcik, Ł.; Stempkowska, A. Rheology of Cross-Linked Poly(Sodium Acrylate)/Sodium Silicate Hydrogels. Arab. J. Sci. Eng. 2016, 41, 2221–2228. DOI: 10.1007/s13369-015-1950-0.
  • Matoušek, V. Research Developments in Pipeline Transport of Settling Slurries. Powder Technol. 2005, 156, 43–51. DOI: 10.1016/j.powtec.2005.05.054.
  • Bartosik, A. Simulation of Turbulent Flow of a Fine Dispersive Slurry. Chem. Eng. Process 2010, 31, 67–80.
  • He, M.; Wang, Y.; Forssberg, E. Slurry Rheology in Wet Ultrafine Grinding of Industrial Minerals: A Review. Powder Technol. 2004, 147, 94–112. DOI: 10.1016/j.powtec.2004.09.032.
  • Vickers, N. J. Animal Communication: When I’m Calling You, Will You Answer Too. Curr. Biol. 2017, 27, 713–715. DOI: 10.1016/j.cub.2017.05.064.
  • Capecelatro, J.; Desjardins, O. Eulerian-Lagrangian Modeling of Turbulent Liquid-Solid Slurries in Horizontal Pipes. Int. J. Multiph. Flow 2013, 55, 64–79. DOI: 10.1016/j.ijmultiphaseflow.2013.04.006.
  • Matoušek, V.; Krupička, J.; Kesely, M. A Layered Model for Inclined Pipe Flow of Settling Slurry. Powder Technol. 2018, 333, 317–326. DOI: 10.1016/j.powtec.2018.04.021.
  • Yoshida, Y.; Katsumoto, T.; Taniguchi, S.; Shimosaka, A.; Shirakawa, Y.; Hidaka, J. Prediction of Viscosity of Slurry Suspended Fine Particles Using Coupled DEM-DNS Simulation. Chem. Eng. Trans. 2013, 32, 2089–2094. DOI: 10.3303/CET1332349.
  • Storms, R. F.; Ramarao, B. V.; Weiland, R. H. Low Shear Rate Viscosity of Bimodally Dis-Persed Suspensions. Powder Technol. 1990, 63, 247–259. DOI: 10.1016/0032-5910(90)80050-9.
  • Chang, C.; Powell, R. L. Effect of Particle Size Distributions on the Rheology of Concentrated Bimodal Suspensions. J. Rheol. 1994, 38, 85–98. DOI: 10.1122/1.550497.
  • Metzner, A. B. Rheology of Suspensions in Polymeric Liquids. J. Rheol. 1985, 29, 739–775. DOI: 10.1122/1.549808.
  • Vlasak, P.; Chara, Z. Conveying of Solid Particles in Newtonian and Non-Newtonian Carriers. Part. Sci. Technol. 2009, 27, 428–443. DOI: 10.1080/02726350903130019.
  • Singh, H.; Kumar, S.; Mohapatra, S. K.; Prasad, S. B.; Singh, J. Singh: Slurryability and Flowability of Coal Water Slurry: Effect of Particle Size Distribution. J. Clean. Prod. 2021, 323, 129183. DOI: 10.1016/j.jclepro.2021.129183.
  • Pradhan, A. R.; Kumar, S. Enhancing the Flowability of Limestone Water Suspension for Economical Transportation by Variation in Particle Size Distribution. Part. Sci. Technol. 2023, 41, 1–18. DOI: 10.1080/02726351.2023.2201179.
  • Kumar, U.; Singh, S. N.; Seshadri, V. Prediction of Flow Characteristics of Bimodal Slurry in Horizontal Pipe Flow. Part. Sci. Technol. 2008, 26, 361–379. DOI: 10.1080/02726350802084564.
  • Behari, M.; Das, D.; Mohanty, A. M. Influence of Surfactant for Stabilization and Pipeline Transportation of Iron Ore Water Slurry: A Review. ACS Omega 2022, 7, 28708–28722. DOI: 10.1021/acsomega.2c02534.
  • Das, S. N.; Biswal, S. K.; Mohapatra, R. K. Recent Advances on Stabilization and Rheolog-ical Behaviour of Iron Ore Slurry for Economic Pipeline Transportation. Mater. Today: Proc. 2020, 33, 5093–5097. DOI: 10.1016/j.matpr.2020.02.851.
  • Ge, Y.; Li, Z. Preparation and Evaluation of Sodium Carboxymethylcellulose from Sugarcane Bagasse for Applications in Coal-Water Slurry. J. Macromol. Sci. Part-A-Pure Appl. Chem. 2013, 50, 757–762. DOI: 10.1080/10601325.2013.792646.
  • Kakui, T.; Kamiya, H. Effect of Sodium Aromatic Sulfonate Group in Anionic Polymer Dispersant on the Viscosity of Coal Water Mixtures. Energy Fuels 2004, 18, 652–658. DOI: 10.1021/ef030154a.
  • Gürses, A.; Açıkyıldız, M.; Doğar, Ç.; Karaca, S.; Bayrak, R. An Investigation on Effects of Various Parameters on Viscosities of Coal-Water Mixture Prepared with Erzurum-Aşkale Lignite Coal. Fuel Process. Technol. 2006, 87, 821–827. DOI: 10.1016/j.fuproc.2006.05.004.
  • Qiu, X.; Zhou, M.; Yang, D.; Lou, H.; Ouyang, X.; Pang, Y. Evaluation of Sulphonated Acetone-Formaldehyde (SAF) Used in Coal Water Slurries Prepared from Different Coals. Fuel 2007, 86, 1439–1445. DOI: 10.1016/j.fuel.2006.11.035.
  • Dincer, H.; Boylu, F.; Sirkeci, A. A.; Ateşok, G. The Effect of Chemicals on the Viscosity and Stability of Coal Water Slurries. Int. J. Miner. Process 2003, 70, 41–51. DOI: 10.1016/S0301-7516(02)00149-7.
  • Qin, Y.; Yang, D.; Guo, W.; Qiu, X. Investigation of Grafted Sulfonated Alkali Lignin Poly- Mer as Dispersant in Coal-Water Slurry. J. Ind. Eng. Chem. 2015, 27, 192–200. DOI: 10.1016/j.jiec.2014.12.034.
  • Naik, H. K.; Mishra, M. K.; Karanam, U. R.; Deb, D. Evaluation of the Role of a Cationic Surfactant on the Flow Characteristics of Fly Ash Slurry. J. Hazard. Mater. 2009, 169, 1134–1140. DOI: 10.1016/j.jhazmat.2009.03.016.
  • Senapati, P. K.; Mohapatra, R.; Pani, G. K.; Mishra, B. K. Studies on Rheological and Leach- Ing Characteristics of Heavy Metals through Selective Additive in High Concentration Ash Slurry. J. Hazard. Mater. 2012, 229, 390–397. DOI: 10.1016/j.jhazmat.2012.06.022.
  • He, M.; Wang, Y.; Forssberg, E. Parameter Studies on the Rheology of Limestone Slurries. Int. J. Miner. Process 2006, 78, 63–77. DOI: 10.1016/j.minpro.2005.07.006.
  • Nieto-Alvarez, D. A.; Zamudio-Rivera, L. S.; Luna-Rojero, E. E.; Rodríguez-Otamendi, D. I.; Marín-León, A.; Hernández-Altamirano, R.; Chávez-Miyauchi, E. T. Adsorption of Zwitterionic Surfactant on Limestone Measured with High-Performance Liquid Chromatog- Raphy: Micelle-Vesicle Influence. Langmuir 2014, 30, 12243–12249. DOI: 10.1021/la501945t.
  • Das, D.; Panigrahi, S.; Misra, P. K.; Nayak, A. Effect of Organized Assemblies. Part 4. Formulation of Highly Concentrated Coal Water Slurry Using a Natural Surfactant. Energy Fuels 2008, 22, 1865–1872. DOI: 10.1021/ef7006563.
  • Das, D.; Panigrahi, S.; Senapati, P. K.; Misra, P. K. Effect of Organized Assemblies. Part 5: Study on the Rheology and Stabilization of a Concentrated Coal Water Slurry Using Saponin of the Acacia Concinna Plant. Energy Fuels 2009, 23, 3217–3226. DOI: 10.1021/ef800915y.
  • Pradhan, A. R.; Kumar, S. Sapindus Laurifolia: An Eco-Friendly Alternative to Synthetic Dispersants for Limestone Transportation. J. Dispers. Sci. Technol. 2023, 44, 1–10. DOI: 10.1080/01932691.2023.2215286.
  • Pattanaik, S.; Parhi, P. K.; Das, D.; Samal, A. K. Acacia Concinna: A Natural Dispersant for Stabilization and Transportation of Fly Ash-Water Slurry. J. Taiwan Inst. Chem. Eng. 2019, 99, 193–200. DOI: 10.1016/j.jtice.2019.03.020.
  • Das, D.; Mohapatra, R. K.; Belbsir, H.; Routray, A.; Parhi, P. K.; El-Hami, K. Combined Effect of Natural Dispersant and a Stabilizer in Formulation of High Concentration Coal Water Slurry: Experimental and Rheological Modeling. J. Mol. Liq. 2020, 320, 114441. DOI: 10.1016/j.molliq.2020.114441.
  • Behera, U.; Das, S. K.; Mishra, D. P.; Parhi, P. K.; Das, D. Enhancing the Rheology and Leachability of Fly Ash Slurry Using Natural-Synthetic Mixed Surfactant Systemfor Hydraulic Stowing in Underground Mines. Int. J. Coal Prep. Util. 2021, 42, 1–21. DOI: 10.1080/19392699.2021.1995374.
  • Behera, U.; Das, S. K.; Mishra, D. P.; Parhi, P. K.; Das, D. Sustainable Transportation, Leaching, Stabilization, and Disposal of Fly Ash Using a Mixture of Natural Surfactant and Sodium Silicate. ACS Omega 2021, 6, 22820–22830. DOI: 10.1021/acsomega.1c03241.
  • Gupta, C.; Kumar, S. Characterization and Stabilization of Iron Ore Suspension and Influence of the Mixture of Natural Additive Sapindus Mukorossi and SDS on the Slurryability. J. Dispers. Sci. Technol. 2023, 44, 1–13. DOI: 10.1080/01932691.2023.2212752.
  • Seyssiecq, I.; Ferrasse, J. H.; Roche, N. State-of-the-Art: Rheological Characterization of Wastewater Treatment Sludge. Biochem. Eng. J. 2003, 16, 41–56. DOI: 10.1016/S1369-703X(03)00021-4.
  • Eshtiaghi, N.; Farno, E.; Parthasarathy, R.; Baudez, J. C. Rheological Behaviour of Anaerobic Digested Sludge: Impact of Concentration and Temperature. Proc. Water Environ. Fed. 2014, 2014, 1–7. DOI: 10.2175/193864714816196691.
  • Eshtiaghi, N.; Markis, F.; Yap, S. D.; Baudez, J. C.; Slatter, P. Rheological Characterization of Municipal Sludge: A Review. Water Res. 2013, 47, 5493–5510. DOI: 10.1016/j.watres.2013.07.001.
  • Dodge, D. W.; Metzner, A. B. Turbulent Flow of Non-Newtonian Systems. AIChE J. 1959, 5, 189–204. DOI: 10.1002/aic.690050214.
  • Mishra, S. K.; Kanungo, S. B. Factors Affecting the Preparation of Highly Concentrated Coal-Water Slurry (HCCWS). J. Sci. Ind. Res. 2000, 59, 765–790.
  • Vallar, S.; Houivet, D.; Fallah, J. E.; Kervadec, D.; Haussonne, J. M. Oxide Slurries Stability and Powders Dispersion: Optimization with Zeta Potential and Rheological Measurements. J. Eur. Ceram. 1999, 19, 1017–1021. DOI: 10.1016/S0955-2219(98)00365-3.
  • Misra, P. K.; Somasundaran, P.; Organization Of Amphiphiles, V. I. A Comparative Study of the Orientation of Polyoxyethylated Alkyl Phenols at the Air-Water and the Silica-Water Interface. J. Surf. Deterg. 2004, 7, 373–378. DOI: 10.1007/s11743-004-0321-y.
  • Misra, P. K.; Dash, U.; Somasundaran, P. Effect of Organized Assemblies, Part VII: Adsorption Behavior of Polyoxyethylated Nonyl Phenol at Silica Cyclohexane Interface and Its Efficiency in Stabilizing the Silica Cyclohexane Dispersion. Ind. Eng. Chem. Res. 2009, 48, 3403–3409. DOI: 10.1021/ie801283f.
  • Misra, P. K.; Panigrahi, S.; Somasundaran, P. Organization of Amphiphiles, Part VIII: Role of Polyoxyethylated Alkylphenols in Optimizing the Beneficiation of Hydrophilic Mineral. Int. J. Miner. Process 2006, 80, 229–237. DOI: 10.1016/j.minpro.2006.04.007.
  • Shi, Q.; Qin, B.; Bi, Q.; Qu, B. Fly Ash Suspensions Stabilized by Hydroxypropyl Guar Gum and Xanthan Gum for Retarding Spontaneous Combustion of Coal. Combust. Sci. Technol. 2018, 190, 2097–2110. DOI: 10.1080/00102202.2018.1491845.
  • Qin, B.; Jia, Y.; Lu, Y.; Li, Y.; Wang, D.; Chen, C. Micro Fly-Ash Particles Stabilized Pickering Foams and Its Combustion-Retardant Characteristics. Fuel 2015, 154, 174–180. DOI: 10.1016/j.fuel.2015.03.078.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.