54
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

Optical and Color Investigation of the Effect of Laser Radiation on Polyaniline/Polyvinyl Pyrrolidone/Zinc Sulfide Nanocomposite Films

, , , &
Pages 732-749 | Received 12 Nov 2023, Accepted 12 Nov 2023, Published online: 27 Nov 2023

References

  • Kushwaha, K. K.; Kumari, S.; Mahobia, S. K.; Tiwary, S. K.; Sinha, B. K.; Ramrakhiani, M. Synthesis and Characterization of ZnSe/CdSe/ZnS Nano-Particles Embedded in Polymer Matrix: A Review. Int. J. Compos. Const. Mater. 2018, 4, 28–33.
  • Karim, M. R.; Yeum, J. H.; Lee, M. S.; Lim, K. T. Preparation of Conducting Polyaniline/TiO2 Composite Submicron-Rods by the Gamma-Radiolysis Oxidative Polymerization Method. React. Funct. Polym. 2008, 68, 1371–1376. DOI: 10.1016/j.reactfunctpolym.2008.06.016.
  • Mbese, J. Z.; Ajibade, P. A. Preparation and Characterization of ZnS, CdS and HgS/Poly(Methyl Methacrylate) Nanocomposites. Polymers 2014, 6, 2332–2344. DOI: 10.3390/polym6092332.
  • Singh, P.; Shukla, S. Advances in Polyaniline-Based Nanocomposites. J. Mater. Sci. 2020, 55, 1331–1365. DOI: 10.1007/s10853-019-04141-z.
  • Shukla, V. K.; Yadav, P.; Yadav, R. S.; Mishra, P.; Pandey, A. C. A New Class of PANI-Ag Core-Shell Nanorods with Sensing Dimensions. Nanoscale 2012, 4, 3886–3893. DOI: 10.1039/c2nr30963g.
  • Cabuk, M.; Gunduz, B. Controlling the Optical Properties of Polyaniline Doped by Boric Acid Particles by Changing Their Doping Agent and Initiator Concentration. Appl. Surf. Sci. 2017, 424, 345–351. DOI: 10.1016/j.apsusc.2017.03.010.
  • Goswami, M.; Mukherjee, A.; Das, A. K.; Ghosh, R.; Meikap, A. K. Synthesis, Characterization and Electrical Property of MWCNT-ZnS Nanocomposite Embedded in Polyaniline. Adv. Nat. Sci: Nanosci. Nanotechnol. 2017, 8, 025018. DOI: 10.1088/2043-6254/aa71ec.
  • Ilegbusi, O. J.; Song, H.; Chakrabarti, R. Biocompatibility and Conductometric Property of Sol–Gel Derived ZnO/PVP Biosensors Film. J. Bionic Eng. 2010, 7, 30–35. DOI: 10.1016/S1672-6529(09)60214-6.
  • Wonci, Z.; Tsolekile, N.; Matoetoe, M. C. Polyvinylpyrrolidone as a Polymer Template for Cu in S Quantum Dots: Effect on Optical Properties. Mater. Today Proc. 2022, 56, 1989–1994. DOI: 10.1016/j.matpr.2021.11.330.
  • Waqas, M.; Diaz Sanchez, F. J.; Menzel, V.; Tudela, I.; Radacsi, N.; Ray, D.; Koutsos, V. Polyaniline/Polyvinylpyrrolidone Nanofibersvia Nozzle-Free Electrospinning. J. Appl. Polym. Sci. 2023, 140, e54586. DOI: 10.1002/app.54586.
  • Chandrasekar, L.; Chandramohan, R.; Vijayalakshmi, R.; Chandrasekaran, S. Preparation and Character Ization of Mn-Doped ZnS Nanoparticles. Int. Nano Lett. 2015, 5, 71–75. DOI: 10.1007/s40089-015-0139-6.
  • Barman, B.; Sarma, K. C. Luminescence Properties of Zns Quantum Dots Embedded in Polymer Matrix. Chalcogenide Lett. 2011, 8, 171–176.
  • Merlin, I.; Kavitha, G.; Vedhi, C.; Mohamad, A. Synthesis and Characterization of Zinc Sulphide Nanoparticles Embedded in Polymeric Matrix. Mater. Today Proc. 2022, 48, 196–200. DOI: 10.1016/j.matpr.2020.06.472.
  • Yesappa, L.; Niranjana, M.; Ashokkumar, S. P.; Vijeth, H.; Basappa, M.; Dwivedi, J.; Petwal, V. C.; Ganesh, S.; Devendrappa, H. Optical Properties and Ionic Conductivity Studies of an 8 MeV Electron Beam Irradiated Poly(Vinylidene Fluoride-co-Hexafluoropropylene)/LiClO4 Electrolyte Film for Optoelectronic Applications. RSC Adv. 2018, 8, 15297–15309. DOI: 10.1039/C8RA00970H.
  • Nouh, S. A.; Aldawood, S.; Barakat, M. M.; Tommalieh, M. J.; Bahareth, R. A. Laser-Induced Changes in the Optical Properties of the Bayfol UV1 7-2 Nuclear Track Detector. Radiat. Eff. Defects Solids 2022, 177, 57–70. DOI: 10.1080/10420150.2022.2049782.
  • Oliveira, V. M.; Ortiz, A. V.; Del Mastro, N. L.; Moura, E. A. B. The Influence of Electron-Beam Irradiation on Some Mechanical Properties of Commercial Multilayer Flexible Packaging Materials. Radiat. Phys. Chem. 2009, 78, 553–555. DOI: 10.1016/j.radphyschem.2009.03.041.
  • Nouh, S. A.; Gaballah, N.; Abou Elfadl, A.; Alsharif, S. A. Modification Induced by Proton Irradiation in Bayfol UV1 7-2 Nuclear Track Detector. Radiat. Prot. Dosim. 2019, 183, 450–459. DOI: 10.1093/rpd/ncy165.
  • Yamauchi, T.; Nakai, H.; Somaki, Y.; Oda, K. Formation of CO2 Gas and OH Groups in CR-39 Plastics Due to Gamma-Ray and Ions Irradiation. Radiat. Meas. 2003, 36, 99–103. DOI: 10.1016/S1350-4487(03)00102-1.
  • Doyan, A.; Susilawati, S.; Prayogi, S.; Bilad, M. R.; Arif, M. F.; Ismail, N. M. Polymer Film Blend of Polyvinyl Alcohol, Trichloroethylene and Cresol Red for Gamma Radiation Dosimetry. Polymers 2021, 13, 1866. DOI: 10.3390/polym13111866.
  • Oberoi, P.; Maurya, C.; Mahanwar, P. J. Effect of Gamma Irradiation Dose on Phthalate Free PVC Dyed Thin Film Dosimeter. J. Mater. Environ. Sci. 2019, 10, 533–542.
  • Angham, G. H.; Khudheyer, J.; Gamal, A.; Mohammad, H. A.; Ahmed, A. A.; Dina, S. A.; Emad, Y. Photostabilization of Poly(Vinyl Chloride) by Organotin(IV) Compounds against Photodegradation. Molecules 2019, 24, 3557. DOI: 10.3390/molecules24193557.
  • Nouh, S. A.; Benthami, K. Gamma Induced Changes in the Structure and Optical Properties of ZnS/PVA Nanocomposite. Vinyl Addi. Technol. 2019, 25, 271–277. DOI: 10.1002/vnl.21689.
  • Bedre, M. D.; Basavaraja, S.; Salwe, B. D.; Shivakumar, V.; Arunkumar, L.; Venkataraman, A. Preparation and Characterization of Pani and Pani-Ag Nanocomposites via Interfacial Polymerization. Polym. Comp 2009, 30, 1668–1677. DOI: 10.1002/pc.20740.
  • Lutterotti, L. Total Pattern Fitting for the Combined Size–Strain–Stress–Texture Determination in Thin Film Diffraction. Nucl. Instr. Methods B 2010, 268, 334–340. DOI: 10.1016/j.nimb.2009.09.053.
  • Bahareth, R. A.; Barakat, M. M.; Alhodaib, A.; Aldawood, S.; Nouh, S. A. Tailoring the Optical Properties of PC/ZnS Nanocomposite by γ Radiation. Eur. Phys. J. Appl. Phys. 2021, 94, 20402. DOI: 10.1051/epjap/2021210116.
  • Yonehara, T.; Goto, H. Synthesis of Polyaniline/Scarlet 3R as a Conductive Polymer. Polymers 2020, 12, 579. DOI: 10.3390/polym12030579.
  • Morsi, M. A.; Abdelaziz, M.; Oraby, A. H.; Mokhles, I. Structural, Optical, Thermal, and Dielectric Properties of Polyethylene Oxide/Carboxymethyl Cellulose Blend Filled with Barium Titanate. J. Phys. Chem. Solids 2019, 125, 103–114. DOI: 10.1016/j.jpcs.2018.10.009.
  • Abdelghany, A.; Abdelrazek, E.; Badr, S.; Morsi, M. Effect of Gamma-Irradiation on (PEO/PVP)/Au Nanocomposite: Materials for Electrochemical and Optical Applications. Mater. Des. 2016, 97, 532–543. DOI: 10.1016/j.matdes.2016.02.082.
  • Guimarães, N. E.; Ximenes, É. R. B.; da Silva, L. A.; da Silva Santos, R. F.; Silvano Araújo, E.; da Silva Aquino, K. A. Electrical and Optical Properties of Poly(Vinyl Chloride)/ZnS Nanocomposites Exposed to Gamma Radiation. Mat. Res. 2023, 26, e20220308. DOI: 10.1590/1980-5373-mr-2022-0308.
  • Rathore, B. S.; Gaur, M. S.; Singh, K. S. Investigation of Optical and Thermally Stimulated Properties of SiO2 Nanoparticles-Filled Polycarbonate. J. Appl. Polym. Sci. 2012, 126, 960–968. DOI: 10.1002/app.37004.
  • Karthikeyan, B.; Hariharan, S.; Mangalaraja, R. V.; Pandiyarajan, T.; Udayabhaskar, R.; Sreekanth, B. Studies on NiO-PVA Composite Films for Opto-Electronics and Optical Limiters, in. IEEE Photon.. Technol. Lett. 2018, 30, 1539–1542. DOI: 10.1109/LPT.2018.2859042.
  • Alhazime, A. A.; Benthami, K. A.; Alsobhi, B. O.; Ali, G. W.; Nouh, S. A. Pani-Ag/PVA Nanocomposite: Gamma Induced Changes in the Thermal and Optical Characteristics. Vinyl Addit. Technol. 2020, 27, 47–53. DOI: 10.1002/vnl.21782.
  • Seoudi, R.; Shabaka, A. A.; Kamal, M.; Abdelrazek, E. M.; Eisa, W. H. Dependence of Structural, Vibrational Spectroscopy and Optical Properties on the Particle Sizes of CdS/Polyaniline Core/Shell Nanocomposites. J. Mol. Struct. 2012, 1013, 156–162. DOI: 10.1016/j.molstruc.2012.01.016.
  • Hamad, T. K.; Yusop, R. M.; Al-Taa’y, W. A.; Abdullah, B.; Yousif, E. Laser Induced Modification of the Optical Properties of nano-ZnO Doped PVC Films. Int. J. Polym. Sci. 2014, 2014, 1–8. DOI: 10.1155/2014/787595.
  • Nouh, S. A.; Abou Elfadl, A.; Benthami, K.; Alhazime, A. A. Structural and Optical Characteristics of Laser Irradiated CdSe/PVA Nanocomposites. Int. Polym. Proc. 2019, 34, 255–261. DOI: 10.3139/217.3729.
  • Rakhshani, A. E. Study of Urbach Tail, Bandgap Energy and Grain-Boundary Characteristics in CdS by Modulated Photocurrent Spectroscopy. J. Phys.: Condens. Matter 2000, 12, 4391–4400. DOI: 10.1088/0953-8984/12/19/309.
  • Urbach, F. The Long-Wavelength Edge of Photographic Sensitivity and of the Electronic Absorption of Solids. Phys. Rev. 1953, 92, 1324–1324. DOI: 10.1103/PhysRev.92.1324.
  • Wahab, L. A.; Zayed, H. A.; Abd El-Galil, A. A. Study of Structural and Optical Properties of Cd1-xZnxSe Thin Films. Thin Solid Films 2012, 520, 5195–5199. DOI: 10.1016/j.tsf.2012.03.119.
  • Prasher, S.; Kumar, M.; Singh, S. Electrical and Optical Properties of O6þ Ion Beam–Irradiated Polymers. Int. J. Polym. Anal. Charact. 2014, 19, 204–211. DOI: 10.1080/1023666X.2014.879418.
  • Tauc, J. Optical Properties of Amorphous Semiconductors. In Amorphous and Liquid Semiconductors, J. Tauc, Ed. Plenum Press: London, New York, 1974, p. 159. DOI: 10.1007/978-1-4615-8705-7.
  • Dongol, M.; El-Denglawey, A.; Abd El Sadek, M. S.; Yahia, I. S. Thermal Annealing Effect on the Structural and the Optical Propertiesof Nano CdTe Films. Optik 2015, 126, 1352–1357. DOI: 10.1016/j.ijleo.2015.04.048.
  • Jubu, P. R.; Yam, F. K.; Igba, V. M.; Beh, K. P. Tauc-Plot Scale and Extrapolation Effect on Bandgap Estimation from UV–Vis–NIR Data – a Case Study of β-Ga2O3. J. Solid State Chem. 2020, 290, 121576. DOI: 10.1016/j.jssc.2020.121576.
  • Gupta, S. K.; Singh, P.; Kumar, R.; Kumar, S. Gamma Radiation Inducedmodification on Physicochemical Properties of Makrofol (kG and N) Polycarbonate. Adv. Polym. Technol. 2015, 34, 21510. DOI: 10.1002/adv.21510.
  • Mahrous, E. M.; Barakat, M. M. E.; Bahareth, R. A.; Benthami, K.; Nouh, S. A. Tailoring the Structural and Optical Properties of Makrofol/CdS Nanocomposite by Gamma Radiation. J. Mater. Res. Technol. 2022, 18, 3085–3093. DOI: 10.1016/j.jmrt.2022.04.011.
  • Palija, T.; Dobi, J.; Jai, M. A Photochemical Method for Improvement of Color Stability at Polymer–Wood. Biointerfaces. Colloids Surf. B Biointerfaces 2013, 108, 152–157. DOI: 10.1016/j.colsurfb.2013.02.045.
  • Pawar, S. M.; Moholkar, A. V.; Kim, I. K.; Shin, S. W.; Moon, J. H.; Rhee, J. I.; Kim, J. H. Effect of Laser Incident Energy on the Structural, Morphological and Optical Properties of Cu2ZnSnS4 (CZTS) Thin Films. Curr. Appl. Phys. 2010, 10, 565–569. DOI: 10.1016/j.cap.2009.07.023.
  • Aziz, S. B.; Dannoun, E. M. A.; Tahir, D. A.; Hussen, S. A.; Abdulwahid, R. T.; Nofal, M. M.; Abdullah, R. M.; Hussein, A. M.; Brevik, I. Synthesis of PVA/CeO2 Based Nanocomposites with Tuned Refractive Index and Reduced Absorption Edge: Structural and Optical Studies. Materials 2021, 14, 1570. DOI: 10.3390/ma14061570.
  • Aziz, S. B.; Abdullah, O. G.; Hussein, A. M.; Ahmed, H. M. From Insulating PMMA Polymer to Conjugated Double Bond Behavior: Green Chemistry as a Novel Approach to Fabricate Small Band Gap Polymers. Polymers 2017, 9, 626. DOI: 10.3390/polym9110626.
  • Brza, M. A.; Aziz, S. B.; Anuar, H.; Al Hazza, M. H. From Green Remediation to Polymer Hybrid Fabrication with Improved Optical Band Gaps. IJMS 2019, 20, 3910. DOI: 10.3390/ijms20163910.
  • Yakuphanoglu, F.; Basaran, E.; Senkal, B. F.; Sezer, E. Electrical and Optical Properties of an Organic Semiconductor Based on Polyaniline Prepared by Emulsion Polymerization and Fabrication of Ag/Polyaniline/n-Si Schottky Diode. J Phys. Chem. B 2006, 110, 16908–16913. DOI: 10.1021/jp060445v.
  • Soylu, M.; Al-Ghamdi, A. A.; Yakuphanoglu, F. Transparent CdO/n-GaN(0001) Heterojunction for Optoelectronic Applications. J. Phys. Chem. Solids 2015, 85, 26–33. DOI: 10.1016/j.jpcs.2015.04.015.
  • Bhavsar, V.; Tripathi, D. Study of Refractive Index Dispersion and Optical Conductivity of PPy Doped PVC Films. Indian J. Pure Appl. Phys. 2016, 54, 105–110.
  • Shams-Eldin, M. A.; Wochnowski, C.; Koerdt, M.; Metev, S.; Hamza, A. A.; Juptner, W. Characterization of the Optical-Functional Properties of a Waveguide Written by an UV Laser into a Planar Polymer Chip. Opt. Mater. 2005, 27, 1138–1148. DOI: 10.1016/j.optmat.2004.09.019.
  • Ranby, B.; Rebek, J. In Photodegradation, Photooxidation and Photostabilization of Polymers: Principles and Applications; Rabek J. F., Ed. Wiley; London, UK, 1996; p. 153
  • Mudila, H.; Prasher, P.; Kumar, A.; Zaidi, M. G. H.; Verma, A. Effect of Temperature on the Polymerization and Optical Conductivity of Thin Flexible Polypyrrole/Starch Composites. J. Phys.: Conf. Ser. 2019, 1531, 012105. DOI: 10.1088/1742-6596/1531/1/012105.
  • Ismail, A. M.; Mohammed, M. I.; El-Metwally, E. G. Influence of Gamma Irradiation on the Structural and Optical Characteristics of Li Ion-Doped PVA/PVP Solid Polymer Electrolytes. Indian J. Phys. 2019, 93, 175–183. DOI: 10.1007/s12648-018-1286-1.
  • Smirnov, A. A.; Kudryashov, A.; Agareva, N.; Afanasiev, A.; Gusev, S.; Tatarskiy, D.; Bityurin, N. In-Situ Monitoring of the Evolution of the Optical Properties for UV LED i Rradiated Polymer-Based Photo-Induced Nanocomposites. Appl. Surf. Sci. 2019, 486, 376–382. DOI: 10.1016/j.apsusc.2019.04.272.
  • Elashmawi, I. S.; Menazea, A. A. Different Time’s Nd:YAG Laser-Irradiated PVA/Ag Nanocomposites: Structural, Optical, and Electrical Characterization. J. Mater. Res. Technol. 2019, 8, 1944–1951. DOI: 10.1016/j.jmrt.2019.01.011.
  • Nassau, K. Color for Science, Art and Technology. Elsevier: New York, 1998.
  • Li, S.; Lin, M. M.; Toprak, M. S.; Kim, D. K.; Muhammed, M. Nanocomposites of Polymer and Inorganic Nanoparticles for Optical and Magnetic Applications. Nano Rev. 2010, 1, 5214. DOI: 10.3402/nano.v1i0.5214.
  • Witzel, R. F.; Burnham, R. W.; Onley, J. W. Threshold and Suprathreshold Perceptual Color Differences. J. Opt. Soc. Am. 1973, 63, 615–625. DOI: 10.1364/josa.63.000615.
  • Wyszecki, G.; Fielder, G. H. New Color-Matching Ellipses. J. Opt. Soc. Am. 1971, 61, 1135–1152. DOI: 10.1364/josa.61.001135.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.