165
Views
5
CrossRef citations to date
0
Altmetric
RESEARCH ARTICLES

Discordance in Recovery Between Altered Locomotion and Muscle Atrophy Induced by Simulated Microgravity in Rats

, , , , , , & show all
Pages 397-406 | Received 06 Aug 2014, Accepted 25 Dec 2014, Published online: 19 Mar 2015

REFERENCES

  • Bojados, M., Herbin, M., & Jamon, M. (2013). Kinematics of treadmill locomotion in mice raised in hypergravity. Behavioural Brain Research, 244, 48–57.
  • Bouët, V., Borel, L., Harlay, F., Gahéry, Y., & Lacour, M. (2004). Kinematics of treadmill locomotion in rats conceived, born, and reared in a hypergravity field (2 g): Adaptation to 1 g. Behavioural Brain Research, 150, 207–216.
  • Bouët, V., Gahéry, Y., & Lacour, M. (2003). Behavioural changes induced by early and long-term gravito-inertial force modification in the rat. Behavioural Brain Research, 139, 97–104.
  • Butler, A. A., Lord, S. R., Rogers, M. W., & Fitzpatrick, R. C. (2008). Muscle weakness impairs the proprioceptive control of human standing. Brain Research, 1242, 244–251.
  • Canu, M.-H. (1996). Effect of hindlimb unloading on locomotor strategy during treadmill locomotion in the rat. European Journal of Applied Physiology and Occupational Physiology, 74, 297–304.
  • Canu, M.-H., & Falempin, M. (1998). Effect of hindlimb unloading on interlimb coordination during treadmill locomotion in the rat. European Journal of Applied Physiology, 78, 509–515.
  • Canu, M.-H., Garnier, C., Lepoutre, F. X., & Falempin, M. (2005). A 3D analysis of hindlimb motion during treadmill locomotion in rats after a 14-day episode of simulated microgravity. Behavioral Brain Research, 157, 309–21.
  • Canu, M.-H., Stevens, L., Ricard-Firinga, C., Picquet, F., & Falempin, M. (2001). Effect of the β2-agonist clenbuterol on the locomotor activity of rat submitted to a 14-day period of hypodynamia-hypokinesia. Behavioural Brain Research, 122, 103–112.
  • Carvalho, J. F., Masuda, M. O., & Pompeu, F. A. M. S. (2005). Method for diagnosis and control of aerobic training in rats based on lactate threshold. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 140, 409–413.
  • D'Amelio, F., Fox, R. A., Wu, L. C., & Daunton, N. G. (1996). Quantitative changes of GABA-immunoreactive cells in the hindlimb representation of the rat somatosensory cortex after 14-day hindlimb unloading by tail suspension. Journal of Neuroscience Research, 44, 532–539.
  • D'Aunno, D. S., Robinson, R. R., Smith, G. S., Thomason, D. B., & Booth, F. W. (1992). Intermittent acceleration as a countermeasure to soleus muscle atrophy. Journal of Applied Physiology, 72, 428–433.
  • D'Aunno, D. S., Thomason, D. B., & Booth, F. W. (1990). Centrifugal intensity and duration as countermeasures to soleus muscle atrophy. Journal of Applied Physiology, 69, 1387–1389.
  • Desaphy, J.-F., Pierno, S., Liantonio, A., De Luca, A., Frigeri, A., Nicchia, G. P., … Camerino, D. C. (2005). Recovery of the soleus muscle after short- and long-term disuse induced by hindlimb unloading: Effects on the electrical properties and myosin heavy chain profile. Neurobiology of Disease, 18, 356–365.
  • Edgerton, V. R., McCall, G. E., Hodgson, J. A., Gotto, J., Goulet, C., Fleischmann, K., & Roy, K. K. (2001). Sensorimotor adaptations to microgravity in humans. Journal of Experimental Biology, 204, 3217–3224.
  • Eng, C. M., Smallwood, L. H., Rainiero, M. P., Lahey, M., Ward, S. R., & Lieber, R. L. (2008). Scaling of muscle architecture and fiber types in the rat hindlimb. Journal of Experimental Biology, 211, 2336–2345.
  • Fujita, N., Arakawa, T., Matsubara, T., Ando, H., & Miki, A. (2009). Influence of fixed muscle length and contractile properties on atrophy and subsequent recovery in the rat soleus and plantaris muscles. Archives of Histology and Cytology, 72, 151–163.
  • Goldstein, M. A., Edwards, R. J., & Schroeter, J. P. (1992). Cardiac morphology after conditions of microgravity during COSMOS 2044. Journal of Applied Physiology, 73, 94–100.
  • Grindeland, R. E., Roy, R. R., Edgerton, V. R., Grossman, E. J., Mukku, V. R., Jiang, B., … Rudolph, I. (1994). Interactive effects of growth hormone and exercise on muscle mass in suspended rats. American Journal of Physiology - Regulatory, Integrative and Comparative Physiology, 267, R316–R322.
  • Gruner, J. A., Altman, J., & Spivack, N. (1980). Effects of arrested cerebellar development on locomotion in the rat: Cinematographic and electromyographic analysis. Experimental Brain Research, 40, 361–373.
  • Heinemeier, K. M. (2009). Effect of unloading followed by reloading on expression of collagen and related growth factors in rat tendon and muscle. Journal of Applied Physiology, 106, 178–186.
  • Ishihara, A., Kawano, F., Ishioka, N., Oishi, H., Higashibata, A., Shimazu, T., & Ohira, Y. (2004). Effects of running exercise during recovery from hindlimb unloading on soleus muscle fibers and their spinal motoneurons in rats. Neuroscience Research, 48, 119–127.
  • Ivanenko, Y. P., Ivanenko, Y. P., Cappellini, G., Portone, A., MacLellan, M. J., & Lacquaniti, F. (2011). Changes of gait kinematics in different simulators of reduced gravity. Journal of Applied Physiology, 110, 781–788.
  • Kachaeva, E. V., Turtikova, O. V., Leinsoo, T. A., & Shenkman, B. S. (2010). Insulin-like growth factor 1 and the key markers of proteolysis during the acute period of reloading of the muscle atrophied under disuse. Biophysics, 55, 1006–1012.
  • Kawano, F., Ishihara, A., Stevens, J. L., Wang, X. D., Ohshima, S., Horisaka, M., … Ohira, Y. (2004). Tension- and afferent input-associated responses of neuromuscular system of rats to hindlimb unloading and/or tenotomy. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 287, R76–R86.
  • Kawano, F., Nomura, T., Kang, M. S., Lee, J. H., Han, E. Y., Chiu, Y. C., …Ohira, Y. (2000). Effects of 9 weeks of hindlimb unloading on motor performances in adult rats. Journal of Gravitational Physiolog, 7, 115–116.
  • Langlet, C., Bastide, B., & Canu, M.-H. (2012). Hindlimb unloading affects cortical motor maps and decreases corticospinal excitability. Experimental Neurology, 237, 211–217.
  • Layne, C. S., Lange, G. W., Pruett, C. J., McDonald, P. V., Merkle, L. A., Mulavara, A. P., … Bloomberg, J. J. (1998). Adaptation of neuromuscular activation patterns during treadmill walking after long-duration space flight. Acta Astronautica, 43, 107–119.
  • Lim, D. J. S. (1974). Observations on saccules of rats exposed to long-term hypergravity. Aerospace Medicine, 45, 705–710.
  • Malone, L. A., Vasudevan, E. V. L., & Bastian, A. J. (2011). Motor adaptation training for faster relearning. The Journal of Neuroscience, 31, 15136–151343.
  • McCall, G. E., Goulet, C., Boorman, G. I., Roy, R. R., & Edgerton, V. R. (2003). Flexor bias of joint position in humans during spaceflight. Experimental Brain Research, 152, 87–94.
  • McCrea, D. A. (1996). Supraspinal and segmental interactions. Canadian Journal of Physiology and Pharmacology, 74, 513–517.
  • Minetti, A. E. (2001). Invariant aspects of human locomotion in different gravitational environments. Acta Astronautica, 49, 191–198.
  • Morey-Holton, E. R., & Globus, R. K. (2002). Hindlimb unloading rodent model: Technical aspects. Journal of Applied Physiology, 92, 1367–1377.
  • Mozdziak, P. E., Pulvermacher, P. M., & Schultz, E. (2000). Unloading of juvenile muscle results in a reduced muscle size 9 weeks after reloading. Journal of Applied Physiology, 88, 158–164.
  • Ohira, Y., Nomura, T., Kawano, F., Sato, Y., Ishihara, A., & Nonaka, I. (2002). Effects of nine weeks of unloading on neuromuscular activities in adult rats. Journal of Gravitational Physiology, 9, 49–59.
  • Ohira, Y., Tanaka, T., Yoshinaga, T., Kawano, F., Nomura, T., Nonaka, I., … Edgerton, V. R. (2001). Ontogenetic, gravity-dependent development of rat soleus muscle. American Journal of Physiology: Cell Physiology, 280, C1008–C1016.
  • Patrick, S. K., Musselman, K. E., Tajino, J., Ou, H.-C., Bastian, A. J., & Yang, J. F. (2014). Prior experience but not size of error improves motor learning on the split-belt treadmill in young children. PLoS One, 9 (3), e93349.
  • Pearson, K. G., Ramirez, J. M., & Jiang, W. (1992). Entrainment of the locomotor rhythm by group Ib afferents from ankle extensor muscles in spinal cats. Experimental Brain Research, 90, 557–566.
  • Reschke, M. F., Bloomberg, J. J., Harm, D. L., Paloski, W. H., Layne, C., & McDonald, V. (1998). Posture, locomotion, spatial orientation, and motion sickness as a function of space flight. Brain Research Reviews, 28, 102–117.
  • Riley, D. A., Bain, J. L., Romatowski, J. G., & Fitts, R. H. (2005). Skeletal muscle fiber atrophy: Altered thin filament density changes slow fiber force and shortening velocity. American Kournal of Physiology: Cell Physiology, 288, C360–C365.
  • Riley, D. A., Slocum, G. R., Bain, J. L., Sedlak, F. R., Sowa, T. E., & Mellender, J. W. (1990). Rat hindlimb unloading: Soleus histochemistry, ultrastructure, and electromyography. Journal of Applied Physiology, 69, 58–66.
  • Riley, D. A., Thompson, J. L., Krippendorf, B. B., & Slocum, G. R. (1995). Review of spaceflight and hindlimb suspension unloading induced sarcomere damage and repair. Basic and Applied Myology, 5, 139–145.
  • Roll, R., Gilhodes, J. C., Roll, J. P., Popov, K., Charade, O., & Gurfinkel, V. (1998). Proprioceptive information processing in weightlessness. Experimental Brain Research, 122, 393–402.
  • Sondag, H. N. P. M., de Jong, H. A. A., & Oosterveld, W. J. (1997). Altered behavior in hamsters conceived and born in hypergravity. Brain Research Bulletin, 43, 289–294.
  • Thomason, D. B., & Booth, F. W. (1990). Atrophy of the soleus muscle by hindlimb unweighting. Journal of Applied Physiology, 68, 1–12.
  • Thota, A. K., Watson, S. C., Knapp, E., Thompson, B., & Jung, R. (2005). Neuromechanical control of locomotion in the rat. Journal of Neurotrauma, 22, 442–465.
  • Trinel, D., Picquet, F., Bastide, B., & Canu, M. H. (2013). Dendritic spine remodeling induced by hindlimb unloading in adult rat sensorimotor cortex. Behavioural Brain Research, 249, 1–7.
  • Ueno, M., & Yamashita, T. (2011). Kinematic analyses reveal impaired locomotion following injury of the motor cortex in mice. Experimental Neurology, 230, 280–290.
  • Varejão, A. S. P., & Filipe, V. M. (2007). Contribution of cutaneous inputs from the hindpaw to the control of locomotion in rats. Behavioural Brain Research, 176, 193–201.
  • Walton, K. D., Benavides, L., Singh, N., & Hatoum, N. (2005). Long-term effects of microgravity on the swimming behaviour of young rats. Journal of Physiology, 565, 609–626.
  • Walton, K. D., Heffernan, C., Sulica, D., & Benavides, L. (2007). Changes in gravity influence rat postnatal motor system development: From simulation to space flight. Gravitational and Space Research, 10, 111–118.
  • Wronski, T. J., & Morey-Holton, E. R. (1987). Skeletal response to simulated weightlessness: a comparison of suspension techniques. Aviation,Sspace, and Environmental Medicine, 58, 63–68.
  • Zhang, L.-F., Sun, B., Cao, X. S., Liu, C., Yu, Z. B., Zhang, L. N., … Wu, X. Y. (2003). Effectiveness of intermittent -Gx gravitation in preventing deconditioning due to simulated microgravity. Journal of Applied Physiology, 95, 207–218.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.