151
Views
5
CrossRef citations to date
0
Altmetric
RAPID COMMUNICATION

The Sine Wave Protocol: Decrease Movement Time Without Increasing Errors

, , &
Pages 277-285 | Received 05 Sep 2013, Accepted 22 Feb 2014, Published online: 30 Apr 2014

REFERENCES

  • Adam, J. J., & Paas, F. G. W. C. (1996). Dwell time in reciprocal aiming task. Human Movement Science, 15, 1–24.
  • Blandin, Y., Toussaint, L., & Shea, C. H. (2008). Specificity of practice: Interaction between concurrent sensory information and terminal feedback. Journal of Experimental Psychology: Learning, Memory, and Cognition, 34, 994–1000.
  • Bongers, R. M., Fernandez, L., & Bootsma, R. (2009). Linear and logarithmic speed-accuracy trade-offs in reciprocal aiming result from task-specific parameterization of an invariant underlying dynamics. Journal of Experimental Psychology: Human Perception and Performance, 35, 1443–1457.
  • Boyle, J. B., Kennedy, D., & Shea, C. H. (2012). Optimizing the control of high ID single degree of freedom movements: Re-thinking the obvious. Experimental Brain Research, 223, 377–387.
  • Boyle, J. B., Panzer, S., Wang, C., Kennedy, D. M., & Shea, C. H. (2013). Optimizing the control of high ID movements: Re-thinking the power of the visual display. Experimental Brain Research, 231, 479–493.
  • Boyle, J. B., Panzer, S., Wright, D., & Shea, C. H. (2012). Extended practice of reciprocal wrist and arm movements of varying difficulties. Acta Psychologica, 140, 142–153.
  • Boyle, J., & Shea, C. H. (2012). Wrist and arm movements of varying difficulties. Acta Psychologica, 137, 382–396.
  • Buchanan, J. J., Park, J.-H., & Shea, C. H. (2006). Target width scaling in a repetitive aiming task: Switching between cyclical and discrete units of action. Experimental Brain Research, 175, 710–725.
  • Carey, J. R., Kimberley, T. J., Lewis, S. M., Auerbach, E. J., Dorsey, L., Rundquist, P., & Ugurbil, K. (2002). Analysis of fMRI and finger tracking training in subjects with chronic stroke. Brain, 125, 773–788.
  • Dounskaia, N., Wisleder, D., & Johnson, T. (2005). Influence of biomechanical factors on substructure of pointing movements. Experimental Brain Research, 164, 505–516.
  • Fernandez, L., & Bootsma, R. J. (2008). Non-linear gaining in precision aiming: making Fitts’ task a bit easier. Acta Psychologica, 129, 217–227.
  • Fitts, P. M. (1954). The information capacity of the human motor system in controlling the amplitude of movement. Journal of Experimental Psychology, 47, 381–391.
  • Fitts, P. M., & Peterson, J. R. (1964). Information capacity of discrete motor responses. Journal of Experimental Psychology, 67, 103–112.
  • Fradet, L., Lee, G., & Dounskaia, N. (2008). Origins of submovements during pointing movements. Acta Psychologica, 129, 91–100.
  • Guiard, Y. (1993). On Fitts's and Hooke's laws: Simple harmonic movement in upper-limb aiming. Acta Psychologica, 82, 139–159.
  • Guiard, Y. (1997). Fitts’ law in the discrete vs. cyclical paradigm. Human Movement Science, 16, 97–131.
  • Harris, C. M., & Wolpert, D. M. (1998). Signal-dependent noise determines motor planning. Nature, 394, 780–784.
  • Huys, R., Fernandez, L., Bootsma, R., & Jirsa, V. K. (2010). Fitts’ law is not continuous in reciprocal aiming. Proceedings of the Royal Society B, 277, 1179–1184.
  • Keele, S. W. (1968). Movement control in skilled motor performance. Psychological Bulletin, 70, 387.
  • Kovacs, A. J., Buchanan, J. J., & Shea, C. H. (2008). Perceptual influences on Fitts’ law. Experimental Brain Research, 190, 99–103.
  • Miall, R. C., & Wolpert, D. M. (1996). Forward models for physiological motor control. Neural Networks, 9, 1265–1279.
  • Meyer, D. E., Abrams, R. A., Kornblum, S., Wright, C. E., & Smith, J. E. (1988). Optimality in human motor performance: Ideal control rapid aimed movements. Psychological Review, 93, 340–370.
  • Meyer, D. E., Smith, J. E. K., & Wright, C. E. (1982). Models for the speed and accuracy of aimed movements. Psychological Review, 89, 449–482.
  • Mottet, D., & Bootsma, R. J. (1999). The dynamics of goal-directed rhythmical aiming. Biological Cybernetics, 80, 235–245.
  • Mottet, D., & Bootsma, R. J. (2001). The dynamics of rhythmical aiming in 2D task space: Relation between geometry and kinematics under examination. Human Movement Science, 20, 213–241.
  • Proteau, L. (1995). Sensory integration in the learning of an aiming task. Canadian Journal of Experimental Psychology, 49, 113–120.
  • Schmidt, R. A. (1975). A schema theory of discrete motor skill learning. Psychological Review, 82, 225–260.
  • Schmidt, R. A., Zelaznik, H. N., Hawkins, B., Frank, J. S., & Quinn, J. T. (1979). Motor-output variability: A theory for the accuracy of rapid motor acts. Psychological Review, 86, 415–451.
  • Wilde, H., & Shea, C. H. (1992). Proportional and nonproportional transfer of movement sequences. Quarterly Journal of Experimental Psychology, 59, 1626–1647.
  • Wisleder. D., & Dounskaia, N. (2007). The role of different submovement types during pointing to a target. Experimental Brain Research, 176, 132–149.
  • Woodworth, R. S. (1899). The accuracy of voluntary movement. Psychological Review, 3, 1–106.
  • Zelaznik, H. N. (1994). Necessary and sufficient conditions for the production of linear speed-accuracy trade-offs in aimed hand movements. In K. M. Newell & D. M. Corcos (Eds.), Variability and motor control (pp. 91–115). Champaign, IL: Human Kinetics.Received September 5, 2013Revised January 30, 2014Accepted February 22, 2014

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.