436
Views
11
CrossRef citations to date
0
Altmetric
REVIEW ARTICLE

Does Response Inhibition Have Pre- and Postdiagnostic Utility in Parkinson's Disease?

&
Pages 29-45 | Received 07 Apr 2014, Accepted 01 Jul 2014, Published online: 09 Jan 2015

REFERENCES

  • Akil, M., Kolachana, B. S., Rothmond, D. A., Hyde, T. M., Weinberger, D. R., & Kleinman, J. E. (2003). Catechol-o-methyltransferase genotype and dopamine regulation in the human brain. Journal of Neuroscience, 23, 2008–2013.
  • Albin, R. L., Young, A. B., & Penney, J. B. (1989). The functional anatomy of basal ganglia disorders. Trends in Neurosciences, 12, 366–375.
  • Alexander, G. E., & Crutcher, M. D. (1990). Functional architecture of basal ganglia circuits: Neural substrates of parallel processing. Trends in Neurosciences, 13, 266–271.
  • Almeida, Q. J., Wishart, L. R., & Lee, T. D. (2002). Bimanual coordination deficits with parkinson's disease: The influence of movement speed and external cueing. Movement Disorders, 17, 30–37.
  • Antonelli, F., Ko, J. H., Miyasaki, J., Lang, A. E., Houle, S., Valzania, F., … Strafella, A. P. (2013). Dopamine-agonists and impulsivity in parkinson's disease: Impulsive choices vs. Impulsive actions. Human Brain Mapping, 35, 2499–2506.
  • Antonini, A., Siri, C., Santangelo, G., Cilia, R., Poletti, M., Canesi, M., … Barone, P. (2011). Impulsivity and compulsivity in drug-naive patients with parkinson's disease. Movement Disorders, 26, 464–468.
  • Apaydin, H., Ahlskog, J. E., Parisi, J. E., Boeve, B. F., & Dickson, D. W. (2002). Parkinson disease neuropathology: Later-developing dementia and loss of the levodopa response. Archives of Neurology, 59, 102–112.
  • Aron, A. R., Behrens, T. E., Smith, S., Frank, M. J., & Poldrack, R. A. (2007). Triangulating a cognitive control network using diffusion-weighted magnetic resonance imaging (mri) and functional mri. Journal of Neuroscience, 27, 3743–3752.
  • Aron, A. R., Durston, S., Eagle, D. M., Logan, G. D., Stinear, C. M., & Stuphorn, V. (2007). Converging evidence for a fronto-basal-ganglia network for inhibitory control of action and cognition. Journal of Neuroscience, 27, 11860–11864.
  • Aron, A. R., Fletcher, P. C., Bullmore, E. T., Sahakian, B. J., & Robbins, T. W. (2003). Stop-signal inhibition disrupted by damage to right inferior frontal gyrus in humans. Nature Neuroscience, 6, 115–116.
  • Aron, A. R., & Poldrack, R. A. (2006). Cortical and subcortical contributions to stop signal response inhibition: Role of the subthalamic nucleus. Journal of Neuroscience, 26, 2424–2433.
  • Aron, A. R., & Verbruggen, F. (2008). Stop the presses: Dissociating a selective from a global mechanism for stopping: Research article. Psychological Science, 19, 1146–1153.
  • Avanzi, M., Baratti, M., Cabrini, S., Uber, E., Brighetti, G., & Bonfa, F. (2006). Prevalence of pathological gambling in patients with parkinson's disease. Movement Disorders, 21, 2068–2072.
  • Baglio, F., Blasi, V., Falini, A., Farina, E., Mantovani, F., Olivotto, F., … Bozzali, M. (2011). Functional brain changes in early parkinson's disease during motor response and motor inhibition. Neurobiology of Aging, 32, 115–124.
  • Ballanger, B., Van Eimeren, T., Moro, E., Lozano, A. M., Hamani, C., Boulinguez, P., … Strafella, A. P. (2009). Stimulation of the subthalamic nucleus and impulsivity: Release your horses. Annals of Neurology, 66, 817–824.
  • Bareš, M., Lungu, O. V., Husárová, I., & Gescheidt, T. (2010). Predictive motor timing performance dissociates between early diseases of the cerebellum and parkinson's disease. Cerebellum, 9, 124–135.
  • Bellgrove, M. A., Hester, R., & Garavan, H. (2004). The functional neuroanatomical correlates of response variability: Evidence from a response inhibition task. Neuropsychologia, 42, 1910–1916.
  • Berg, D., & Poewe, W. (2012). Can we define “pre-motor” parkinson's disease? Movement Disorders, 27, 595–596.
  • Beste, C., Willemssen, R., Saft, C., & Falkenstein, M. (2010). Response inhibition subprocesses and dopaminergic pathways: Basal ganglia disease effects. Neuropsychologia, 48, 366–373.
  • Bjorklund, A., & Dunnett, S. B. (2007). Dopamine neuron systems in the brain: An update. Trends in Neurosciences, 30, 194–202.
  • Blasi, G., Mattay, V. S., Bertolino, A., Elvevåg, B., Callicott, J. H., Das, S., … Weinberger, D. R. (2005). Effect of catechol-o-methyltransferase val158met genotype on attentional control. Journal of Neuroscience, 25, 5038–5045.
  • Bokura, H., Yamaguchi, S., & Kobayashi, S. (2005). Event-related potentials for response inhibition in parkinson's disease. Neuropsychologia, 43, 967–975.
  • Braak, H., Del Tredici, K., Rüb, U., De Vos, R. A. I., Jansen Steur, E. N. H., & Braak, E. (2003). Staging of brain pathology related to sporadic parkinson's disease. Neurobiology of Aging, 24, 197–211.
  • Braak, H., Ghebremedhin, E., Rub, U., Bratzke, H., & Del Tredici, K. (2004). Stages in the development of parkinson's disease-related pathology. Cell and Tissue Research, 318, 121–134.
  • Braver, T. S., & Barch, D. M. (2002). A theory of cognitive control, aging cognition, and neuromodulation. Neuroscience & Behavioral Reviews, 26, 809–817.
  • Brown, R. G., Jahanshahi, M., & Marsden, C. D. (1993). The execution of bimanual movements in patients with parkinson's, huntington's and cerebellar disease. Journal of Neurology, Neurosurgery, and Psychiatry, 56, 295–297.
  • Byblow, W. D., Summers, J. J., Lewis, G. N., & Thomas, J. (2002). Bimanual coordination in parkinson's disease: Deficits in movement frequency, amplitude, and pattern switching. Movement Disorders, 17, 20–29.
  • Cameron, I. G. M., Watanabe, M., Pari, G., & Munoz, D. P. (2010). Executive impairment in parkinson's disease: Response automaticity and task switching. Neuropsychologia, 48, 1948–1957.
  • Carr, D. B., & Sesack, S. R. (2000). Projections from the rat prefrontal cortex to the ventral tegmental area: Target specificity in the synaptic associations with mesoaccumbens and mesocortical neurons. Journal of Neuroscience, 20, 3864–3873.
  • Carter, C. J., & Pycock, C. J. (1980). Behavioral and biochemical effects of dopamine and noradrenaline depletion within the medial prefrontal cortex of the rat. Brain Research, 192, 163–176.
  • Ceravolo, R., Frosini, D., Rossi, C., & Bonuccelli, U. (2009). Impulse control disorders in parkinson's disease: Definition, epidemiology, risk factors, neurobiology and management. Parkinsonism and Related Disorders, 15, S111–115.
  • Chowdhury, R., Guitart-Masip, M., Lambert, C., Dayan, P., Huys, Q., Duzel, E., & Dolan, R. J. (2013). Dopamine restores reward prediction errors in old age. Nature Neuroscience, 16, 648–653.
  • Claffey, M. P., Sheldon, S., Stinear, C. M., Verbruggen, F., & Aron, A. R. (2010). Having a goal to stop action is associated with advance control of specific motor representations. Neuropsychologia, 48, 541–548.
  • Coizet, V., Graham, J. H., Moss, J., Bolam, J. P., Savasta, M., McHaffie, J. G., … Overton, P. G. (2009). Short-latency visual input to the subthalamic nucleus is provided by the midbrain superior colliculus. Journal of Neuroscience, 29, 5701–5709.
  • Colzato, L. S., van den Wildenberg, W. P., & Hommel, B. (2013). The genetic impact (c957t-drd2) on inhibitory control is magnified by aging. Neuropsychologia, 51, 1377–1381.
  • Colzato, L. S., van den Wildenberg, W. P., Van der Does, A. J., & Hommel, B. (2010). Genetic markers of striatal dopamine predict individual differences in dysfunctional, but not functional impulsivity. Neuroscience, 170, 782–788.
  • Colzato, L. S., Waszak, F., Nieuwenhuis, S., Posthuma, D., & Hommel, B. (2010). The flexible mind is associated with the catechol-o-methyltransferase (comt) val158met polymorphism: Evidence for a role of dopamine in the control of task-switching. Neuropsychologia, 48, 2764–2768.
  • Comings, D. E., Gade, R., Wu, S., Chiu, C., Dietz, G., Muhleman, D., „ MacMurray, P. (1997). Studies of the potential role of the dopamine d1 receptor gene in addictive behaviors. Molecular Psychiatry, 2, 44–56.
  • Congdon, E., Constable, R. T., Lesch, K. P., & Canli, T. (2009). Influence of slc6a3 and comt variation on neural activation during response inhibition. Biological Psychology, 81, 144–152.
  • Cools, R. (2006). Dopaminergic modulation of cognitive function-implications for l-dopa treatment in parkinson's disease. Neuroscience & Behavioral Reviews, 30, 1–23.
  • Cools, R., Miyakawa, A., Sheridan, M., & D’Esposito, M. (2010). Enhanced frontal function in parkinson's disease. Brain, 133(Pt 1), 225–233.
  • Cooper, J. A., Sagar, H. J., Tidswell, P., & Jordan, N. (1994). Slowed central processing in simple and go/no-go reaction time tasks in parkinson's disease. Brain, 117, 517–529.
  • Coxon, J. P., Stinear, C. M., & Byblow, W. D. (2006). Intracortical inhibition during volitional inhibition of prepared action. Journal of Neurophysiology, 95, 3371–3383.
  • Coxon, J. P., Stinear, C. M., & Byblow, W. D. (2007). Selective inhibition of movement. Journal of Neurophysiology, 97, 2480–2489.
  • Coxon, J. P., Stinear, C. M., & Byblow, W. D. (2009). Stop and go: The neural basis of selective movement prevention. Journal of Cognitive Neuroscience, 21, 1193–1203.
  • Coxon, J. P., Van Impe, A., Wenderoth, N., & Swinnen, S. P. (2012). Aging and inhibitory control of action: Cortico-subthalamic connection strength predicts stopping performance. Journal of Neuroscience, 32, 8401–8412.
  • Danion, F., & Latash, M. (Eds.). (2011). Motor control: Theories, experiments, and applications. London, England: Oxford University Press.
  • De Jong, R., Coles, M. G. H., Logan, G. D., & Gratton, G. (1990). In search of the point of no return: The control of response processes. Journal of Experimental Psychology: Human Perception and Performance, 16, 164–182.
  • De Lau, L. M., Koudstaal, P. J., Hofman, A., & Breteler, M. M. (2006). Subjective complaints precede parkinson disease: The rotterdam study. Archives of Neurology, 63, 362–365.
  • Del Tredici, K., Rüb, U., De Vos, R. A. I., Bohl, J. R. E., & Braak, H. (2002). Where does parkinson disease pathology begin in the brain? Journal of Neuropathology and Experimental Neurology, 61, 413–426.
  • Diamond, A., Briand, L., Fossella, J., & Gehlbach, L. (2004). Genetic and neurochemical modulation of prefrontal cognitive functions in children. American Journal of Psychiatry, 161, 125–132.
  • Dodd, M. L., Klos, K. J., Bower, J. H., Geda, Y. E., Josephs, K. A., & Ahlskog, J. E. (2005). Pathological gambling caused by drugs used to treat parkinson disease. Archives of Neurology, 62, 1377–1381.
  • Duque, J., & Ivry, R. B. (2009). Role of corticospinal suppression during motor preparation. Cerebral Cortex, 19, 2013–2024.
  • Durstewitz, D., & Seamans, J. K. (2008). The dual-state theory of prefrontal cortex dopamine function with relevance to catechol-o-methyltransferase genotypes and schizophrenia. Biological Psychiatry, 64, 739–749.
  • Eagle, D. M., Wong, J. C., Allan, M. E., Mar, A. C., Theobald, D. E., & Robbins, T. W. (2011). Contrasting roles for dopamine d1 and d2 receptor subtypes in the dorsomedial striatum but not the nucleus accumbens core during behavioral inhibition in the stop-signal task in rats. Journal of Neuroscience, 31, 7349–7356.
  • European Parkinson's Disease Association. (2014). Prevalence of parkinson's disease. Available at http://www.epda.eu.com/en/parkinsons/life-with-parkinsons/part-1/prevalence-of-parkinsons-disease/
  • Fallon, S. J., Williams-Gray, C. H., Barker, R. A., Owen, A. M., & Hampshire, A. (2013). Prefrontal dopamine levels determine the balance between cognitive stability and flexibility. Cerebral Cortex, 23, 361–369.
  • Fan, D., Rossi, M. A., & Yin, H. H. (2012). Mechanisms of action selection and timing in substantia nigra neurons. Journal of Neuroscience, 32, 5534–5548.
  • Farley, B. G., Sherman, S., & Koshland, G. F. (2004). Shoulder muscle activity in parkinson's disease during multijoint arm movements across a range of speeds. Experimental Brain Research, 154, 160–175.
  • Farrell, S. M., Tunbridge, E. M., Braeutigam, S., & Harrison, P. J. (2012). Comt val 158met genotype determines the direction of cognitive effects produced by catechol-o-methyltransferase inhibition. Biological Psychiatry, 71, 538–544.
  • Fearnley, J. M., & Lees, A. J. (1991). Ageing and parkinson's disease: Substantia nigra regional selectivity. Brain, 114, 2283–2301.
  • Fisk, J. E., & Sharp, C. A. (2004). Age-related impairment in executive functioning: Updating, inhibition, shifting, and access. Journal of Clinical and Experimental Neuropsychology, 26, 874–890.
  • Foltynie, T., Goldberg, T. E., Lewis, S. G. J., Blackwell, A. D., Kolachana, B. S., Weinberger, D. R., … Barker, R. A. (2004). Planning ability in parkinson's disease is influenced by the comt val158met polymorphism. Movement Disorders, 19, 885–891.
  • Gaenslen, A., Swid, I., Liepelt-Scarfone, I., Godau, J., & Berg, D. (2011). The patients’ perception of prodromal symptoms before the initial diagnosis of parkinson's disease. Movement Disorders, 26, 653–658.
  • Garavan, H., Ross, T. J., & Stein, E. A. (1999). Right hemispheric dominance of inhibitory control: An event-related functional mri study. Proceedings of the National Academy of Sciences of the USA, 96, 8301–8306.
  • Gattellaro, G., Minati, L., Grisoli, M., Mariani, C., Carella, F., Osio, M., … Bruzzone, M. G. (2009). White matter involvement in idiopathic parkinson disease: A diffusion tensor imaging study. American Journal of Neuroradiology, 30, 1222–1226.
  • Gauggel, S., Rieger, M., & Feghoff, T. A. (2004). Inhibition of ongoing responses in patients with parkinson's disease. Journal of Neurology, Neurosurgery and Psychiatry, 75, 539–544.
  • Gerfen, C. R., Engber, T. M., Mahan, L. C., Susel, Z., Chase, T. N., Monsma, F. J. Jr., & Sibley, D. R. (1990). D1 and d2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science, 250, 1429–1432.
  • Geuze, R. H. (2001). Stability of bimanual coordination in parkinson's disease and cognitive modulation of intention. Motor Control, 5, 361–384.
  • Ghahremani, D. G., Lee, B., Robertson, C. L., Tabibnia, G., Morgan, A. T., De Shetler, N., … London, E. D. (2012). Striatal dopamine d(2)/d(3) receptors mediate response inhibition and related activity in frontostriatal neural circuitry in humans. Journal of Neuroscience, 32, 7316–7324.
  • Giladi, N., Weitzman, N., Schreiber, S., Shabtai, H., & Peretz, C. (2007). New onset heightened interest or drive for gambling, shopping, eating or sexual activity in patients with parkinson's disease: The role of dopamine agonist treatment and age at motor symptoms onset. Journal of Psychopharmacology, 21, 501–506.
  • Goldman-Rakic, P. S., Muly Iii, E. C., & Williams, G. V. (2000). D1 receptors in prefrontal cells and circuits. Brain Research Reviews, 31, 295–301.
  • Goldstein, D. S., Holmes, C., & Sharabi, Y. (2012). Cerebrospinal fluid biomarkers of central catecholamine deficiency in parkinson's disease and other synucleinopathies. Brain, 135, 1900–1913.
  • Gonera, E. G., van't Hof, M., Berger, H. J., van Weel, C., & Horstink, M. W. (1997). Symptoms and duration of the prodromal phase in parkinson's disease. Movement Disorders, 12, 871–876.
  • Goto, Y., & Grace, A. A. (2005). Dopaminergic modulation of limbic and cortical drive of nucleus accumbens in goal-directed behavior. Nature Neuroscience, 8, 805–812.
  • Goudriaan, A. E., Oosterlaan, J., de Beurs, E., & van den Brink, W. (2006). Neurocognitive functions in pathological gambling: A comparison with alcohol dependence, tourette syndrome and normal controls. Addiction, 101, 534–547.
  • Gradinaru, V., Mogri, M., Thompson, K. R., Henderson, J. M., & Deisseroth, K. (2009). Optical deconstruction of parkinsonian neural circuitry. Science, 324, 354–359.
  • Grinberg, L. T., Rueb, U., Alho, A. T., & Heinsen, H. (2010). Brainstem pathology and non-motor symptoms in pd. Journal of Neurological Sciences, 289, 81–88.
  • Grosset, K. A., Macphee, G., Pal, G., Stewart, D., Watt, A., Davie, J., & Grosset, D. G. (2006). Problematic gambling on dopamine agonists: Not such a rarity. Movement Disorders, 21, 2206–2208.
  • Gurevich, E. V., & Joyce, J. N. (1999). Distribution of dopamine d3 receptor expressing neurons in the human forebrain: Comparison with d2 receptor expressing neurons. Neuropsychopharmacology, 20, 60–80.
  • Hallett, M., & Khoshbin, S. (1980). A physiological mechanism of bradykinesia. Brain, 103, 301–314.
  • Hamidovic, A., Dlugos, A., Skol, A., Palmer, A. A., & de Wit, H. (2009). Evaluation of genetic variability in the dopamine receptor d2 in relation to behavioral inhibition and impulsivity/sensation seeking: An exploratory study with d-amphetamine in healthy participants. Experimental and Clinical Psychopharmacology, 17, 374–383.
  • Harrington, D. L., Haaland, K. Y., & Hermanowicz, N. (1998). Temporal processing in the basal ganglia. Neuropsychology, 12, 3–12.
  • Hocherman, S., & Giladi, N. (1998). Visuomotor control abnormalities in patients with unilateral parkinsonism. Neurology, 50, 1648–1654.
  • Hoogland, J., de Bie, R. M., Williams-Gray, C. H., Muslimovic, D., Schmand, B., & Post, B. (2010). Catechol-o-methyltransferase val158met and cognitive function in parkinson's disease. Movement Disorders, 25, 2550–2554.
  • Horstink, M. W, & Morrish, P. K. (1999). Preclinical diagnosis of parkinson's disease. Advances in Neurology, 80, 327–333.
  • Isaias, I. U., Siri, C., Cilia, R., De Gaspari, D., Pezzoli, G., & Antonini, A. (2008). The relationship between impulsivity and impulse control disorders in parkinson's disease. Movement Disorders, 23, 411–415.
  • Izawa, M. O., Miwa, H., Kajimoto, Y., & Kondo, T. (2012). Combination of transcranial sonography, olfactory testing, and mibg myocardial scintigraphy as a diagnostic indicator for parkinson's disease. European Journal of Neurology, 19, 411–416.
  • Jahanshahi, M., Jenkins, I. H., Brown, R. G., Marsden, C. D., Passingham, R. E., & Brooks, D. J. (1995). Self-initiated versus externally triggered movements. I. An investigation using measurement of regional cerebral blood flow with pet and movement-related potentials in normal and parkinson's disease subjects. Brain, 118, 913–933.
  • Jahanshahi, M., Jones, C. R., Zijlmans, J., Katzenschlager, R., Lee, L., Quinn, N., … Lees, A. J. (2010). Dopaminergic modulation of striato-frontal connectivity during motor timing in parkinson's disease. Brain, 133, 727–745.
  • Jahfari, S., Waldorp, L., van den Wildenberg, W. P., Scholte, H. S., Ridderinkhof, K. R., & Forstmann, B. U. (2011). Effective connectivity reveals important roles for both the hyperdirect (fronto-subthalamic) and the indirect (fronto-striatal-pallidal) fronto-basal ganglia pathways during response inhibition. Journal of Neuroscience, 31, 6891–6899.
  • Kaasinen, V., Nurmi, E., Bruck, A., Eskola, O., Bergman, J., Solin, O., & Rinne, J. O. (2001). Increased frontal [(18)f]fluorodopa uptake in early parkinson's disease: Sex differences in the prefrontal cortex. Brain, 124, 1125–1130.
  • Kandel, E. R., Schwartz, J. H., Jessell, T. M., Siegelbaum, S. A., & Hudspeth, A. J. (2013). Principles of neural science (5th ed.). New York, NY: McGraw-Hill.
  • King, A. V., Linke, J., Gass, A., Hennerici, M. G., Tost, H., Poupon, C., & Wessa, M. (2012). Microstructure of a three-way anatomical network predicts individual differences in response inhibition: A tractography study. Neuroimage, 59, 1949–1959.
  • Klos, K. J., Bower, J. H., Josephs, K. A., Matsumoto, J. Y., & Ahlskog, J. E. (2005). Pathological hypersexuality predominantly linked to adjuvant dopamine agonist therapy in parkinson's disease and multiple system atrophy. Parkinsonism and Related Disorders, 11, 381–386.
  • Ko, Y. T., & Miller, J. (2011). Nonselective motor-level changes associated with selective response inhibition: Evidence from response force measurements. Psychonomic Bulletin and Review, 18, 813–819.
  • Kolachana, B. S., Saunders, R. C., & Weinberger, D. R. (1995). Augmentation of prefrontal cortical monoaminergic activity inhibits dopamine release in the caudate nucleus: An in vivo neurochemical assessment in the rhesus monkey. Neuroscience, 69, 859–868.
  • Krämer, U. M., Cunillera, T., Càmara, E., Marco-Pallarés, J., Cucurell, D., Nager, W., … Münte, T. F. (2007). The impact of catechol-o-methyltransferase and dopamine d4 receptor genotypes on neurophysiological markers of performance monitoring. Journal of Neuroscience, 27, 14190–14198.
  • Lanciego, J. L., Gonzalo, N., Castle, M., Sanchez-Escobar, C., Aymerich, M. S., & Obeso, J. A. (2004). Thalamic innervation of striatal and subthalamic neurons projecting to the rat entopeduncular nucleus. European Journal of Neuroscience, 19, 1267–1277.
  • Lappin, J. S., & Eriksen, C. W. (1966). Use of a delayed signal to stop a visual reaction-time response. Journal of Experimental Psychology, 72, 805–811.
  • Lee, J. Y., Lee, E. K., Park, S. S., Lim, J. Y., Kim, H. J., Kim, J. S., & Jeon, B. S. (2009). Association of drd3 and grin2b with impulse control and related behaviors in parkinson's disease. Movement Disorders, 24, 1803–1810.
  • Lewis, S. J., Dove, A., Robbins, T. W., Barker, R. A., & Owen, A. M. (2003). Cognitive impairments in early parkinson's disease are accompanied by reductions in activity in frontostriatal neural circuitry. Journal of Neuroscience, 23, 6351–6356.
  • Liddle, P. F., Kiehl, K. A., & Smith, A. M. (2001). Event-related fmri study of response inhibition. Human Brain Mapping, 12, 100–109.
  • Logan, G. D., & Cowan, W. B. (1984). On the ability to inhibit thought and action: A theory of an act of control. Psychological Review, 91, 295–327.
  • MacDonald, H. J., Stinear, C. M., & Byblow, W. D. (2012). Uncoupling response inhibition. Journal of Neurophysiology, 108, 1492–1500.
  • Maetzler, W., & Hausdorff, J. M. (2012). Motor signs in the prodromal phase of parkinson's disease. Movement Disorders, 27, 627–633.
  • Majid, D. S., Cai, W., George, J. S., Verbruggen, F., & Aron, A. R. (2012). Transcranial magnetic stimulation reveals dissociable mechanisms for global versus selective corticomotor suppression underlying the stopping of action. Cerebral Cortex, 22, 363–371.
  • Malapani, C., Rakitin, B., Levy, R., Meck, W. H., Deweer, B., Dubois, B., & Gibbon, J. (1998). Coupled temporal memories in parkinson's disease: A dopamine-related dysfunction. Journal of Cognitive Neuroscience, 10, 316–331.
  • Marino, S., Ciurleo, R., di Lorenzo, G., Barresi, M., de Salvo, S., Giacoppo, S., … Bramanti, P. (2012). Magnetic resonance imaging markers for early diagnosis of parkinson's disease. Neural Regeneration Research, 7, 611–619.
  • Martin, W. R. W., Wieler, M., & Gee, M. (2008). Midbrain iron content in early parkinson disease: A potential biomarker of disease status. Neurology, 70, 1411–1417.
  • Meck, W. H. (1996). Neuropharmacology of timing and time perception. Brain Research: Cognitive Brain Research, 3, 227–242.
  • Michell, A. W., Lewis, S. J. G., Foltynie, T., & Barker, R. A. (2004). Biomarkers and parkinson's disease. Brain, 127, 1693–1705.
  • Mirabella, G., Iaconelli, S., Romanelli, P., Modugno, N., Lena, F., Manfredi, M., & Cantore, G. (2012). Deep brain stimulation of subthalamic nuclei affects arm response inhibition in parkinson's patients. Cerebral Cortex, 22, 1124–1132.
  • Mostofsky, S. H., Schafer, J. G. B., Abrams, M. T., Goldberg, M. C., Flower, A. A., Boyce, A., … Pekar, J. J. (2003). Fmri evidence that the neural basis of response inhibition is task-dependent. Cognitive Brain Research, 17, 419–430.
  • Nambu, A., Tokuno, H., & Takada, M. (2002). Functional significance of the cortico-subthalamo-pallidal hyperdirect pathway. Neuroscience Research, 43, 111–117.
  • Nandam, L. S., Hester, R., Wagner, J., Dean, A. J., Messer, C., Honeysett, A., … Bellgrove, M. A. (2013). Dopamine d2 receptor modulation of human response inhibition and error awareness. Journal of Cognitive Neuroscience, 25, 649–656.
  • Nemoda, Z., Szekely, A., & Sasvari-Szekely, M. (2011). Psychopathological aspects of dopaminergic gene polymorphisms in adolescence and young adulthood. Neuroscience & Behavioral Reviews, 35, 1665–1686.
  • O’Boyle, D. J., Freeman, J. S., & Cody, F. W. (1996). The accuracy and precision of timing of self-paced, repetitive movements in subjects with parkinson's disease. Brain, 119, 51–70.
  • O’Callaghan, C., Naismith, S. L., Hodges, J. R., Lewis, S. J., & Hornberger, M. (2013). Fronto-striatal atrophy correlates of inhibitory dysfunction in parkinson's disease versus behavioral variant frontotemporal dementia. Cortex, 49, 1833–1843.
  • Obeso, I., Wilkinson, L., Casabona, E., Bringas, M. L., Álvarez, M., Álvarez, L., … Jahanshahi, M. (2011). Deficits in inhibitory control and conflict resolution on cognitive and motor tasks in parkinson's disease. Experimental Brain Research, 212, 371–384.
  • Obeso, J. A., Guridi, J., Nambu, A., & Crossman, A. R. (2013). Motor manifestations and basal ganglia output activity: The paradox continues. Movement Disorders, 28, 416–418.
  • Pastor, M. A., Jahanshahi, M., Artieda, J., & Obeso, J. A. (1992). Performance of repetitive wrist movements in parkinson's disease. Brain, 115, 875–891.
  • Pearson-Fuhrhop, K. M., Minton, B., Acevedo, D., Shahbaba, B., & Cramer, S. C. (2013). Genetic variation in the human brain dopamine system influences motor learning and its modulation by l-dopa. PLoS One, 8, e61197.
  • Pennartz, C. M., Berke, J. D., Graybiel, A. M., Ito, R., Lansink, C. S., van der Meer, M., … Voorn, P. (2009). Corticostriatal interactions during learning, memory processing, and decision making. Journal of Neuroscience, 29, 12831–12838.
  • Peper, J. S., Mandl, R. C., Braams, B. R., de Water, E., Heijboer, A. C., Koolschijn, P. C., & Crone, E. A. (2013). Delay discounting and frontostriatal fiber tracts: A combined dti and mtr study on impulsive choices in healthy young adults. Cerebral Cortex, 23, 1695–1702.
  • Peran, P., Cherubini, A., Assogna, F., Piras, F., Quattrocchi, C., Peppe, A., … Sabatini, U. (2010). Magnetic resonance imaging markers of parkinson's disease nigrostriatal signature. Brain, 133, 3423–3433.
  • Pfann, K. D., Buchman, A. S., Comella, C. L., & Corcos, D. M. (2001). Control of movement distance in parkinson's disease. Movement Disorders, 16, 1048–1065.
  • Picard, N., & Strick, P. L. (1996). Motor areas of the medial wall: A review of their location and functional activation. Cerebral Cortex, 6, 342–353.
  • Ponsen, M. M., Daffertshofer, A., van den Heuvel, E., Wolters, E. C., Beek, P. J., & Berendse, H. W. (2006). Bimanual coordination dysfunction in early, untreated parkinson's disease. Parkinsonism and Related Disorders, 12, 246–252.
  • Ponsen, M. M., Daffertshofer, A., Wolters, E. C., Beek, P. J., & Berendse, H. W. (2008). Impairment of complex upper limb motor function in de novo parkinson's disease. Parkinsonism and Related Disorders, 14, 199–204.
  • Pontone, G., Williams, J. R., Bassett, S. S., & Marsh, L. (2006). Clinical features associated with impulse control disorders in parkinson disease. Neurology, 67, 1258–1261.
  • Przuntek, H., Muller, T., & Riederer, P. (2004). Diagnostic staging of parkinson's disease: Conceptual aspects. J Neural Transm, 111, 201–216.
  • Pycock, C. J., Carter, C. J., & Kerwin, R. W. (1980). Effect of 6-hydroxydopamine lesions of the medial prefrontal cortex on neurotransmitter systems in subcortical sites in the rat. J Neurochem, 34, 91–99.
  • Rakshi, J. S., Uema, T., Ito, K., Bailey, D. L., Morrish, P. K., Ashburner, J., … Brooks, D. J. (1999). Frontal, midbrain and striatal dopaminergic function in early and advanced parkinson's disease a 3d [(18)f]dopa-pet study. Brain, 122 (Pt 9), 1637–1650.
  • Riederer, P., & Wuketich, S. (1976). Time course of nigrostriatal degeneration in parkinson's disease. A detailed study of influential factors in human brain amine analysis. Journal of Neural Transmission: General Section, 38, 277–301.
  • Robbins, T. W. (2007). Shifting and stopping: Fronto-striatal substrates, neurochemical modulation and clinical implications. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 362, 917–932.
  • Robbins, T. W., & Arnsten, A. F. (2009). The neuropsychopharmacology of fronto-executive function: Monoaminergic modulation. Annual Review of Neuroscience, 32, 267–287.
  • Roberts, A. C., De Salvia, M. A., Wilkinson, L. S., Collins, P., Muir, J. L., Everitt, B. J., & Robbins, T. W. (1994). 6-hydroxydopamine lesions of the prefrontal cortex in monkeys enhance performance on an analog of the wisconsin card sort test: Possible interactions with subcortical dopamine. Journal of Neuroscience, 14, 2531–2544.
  • Robichaud, J. A., Pfann, K. D., Leurgans, S., Vaillancourt, D. E., Comella, C. L., & Corcos, D. M. (2009). Variability of emg patterns: A potential neurophysiological marker of parkinson's disease? Clinical Neurophsyiology, 120, 390–397.
  • Rowe, J. B., Hughes, L., Ghosh, B. C. P., Eckstein, D., Williams-Gray, C. H., Fallon, S., Barker, R. A., & Owen, A. M. (2008). Parkinson's disease and dopaminergic therapy - differential effects on movement, reward and cognition. Brain, 131, 2094–2105.
  • Rubia, K., Smith, A. B., Brammer, M. J., & Taylor, E. (2003). Right inferior prefrontal cortex mediates response inhibition while mesial prefrontal cortex is responsible for error detection. NeuroImage, 20, 351–358.
  • Sawamoto, N., Piccini, P., Hotton, G., Pavese, N., Thielemans, K., & Brooks, D. J. (2008). Cognitive deficits and striato-frontal dopamine release in parkinson's disease. Brain, 131, 1294–1302.
  • Schultz, W. (2002). Getting formal with dopamine and reward. Neuron, 36, 241–263.
  • Shannon, K. M., Keshavarzian, A., Dodiya, H. B., Jakate, S., & Kordower, J. H. (2012). Is alpha-synuclein in the colon a biomarker for premotor parkinson's disease? Evidence from 3 cases. Movement Disorders, 27, 716–719.
  • Shepherd, G. M. (2013). Corticostriatal connectivity and its role in disease. Nature Revews Neuroscience, 14, 278–291.
  • Slater-Hammel, A. (1960). Reliability, accuracy and refractoriness of a transit reation. The Research Quarterly, 31, 217–218.
  • Stinear, C. M., & Byblow, W. D. (2004). Impaired inhibition of a pre-planned response in focal hand dystonia. Experimental Brain Research, 158, 207–212.
  • Stinear, C. M., Coxon, J. P., & Byblow, W. D. (2009). Primary motor cortex and movement prevention: Where stop meets go. Neuroscience and Biobehavioral Reviews, 33, 662–673.
  • Swann, N., Poizner, H., Houser, M., Gould, S., Greenhouse, I., Cai, W., … Aron, A. R. (2011). Deep brain stimulation of the subthalamic nucleus alters the cortical profile of response inhibition in the beta frequency band: A scalp eeg study in Parkinson's disease. Journal of Neuroscience, 31, 5721–5729.
  • Tachibana, H., Aragane, K., Miyata, Y., & Sugita, M. (1997). Electrophysiological analysis of cognitive slowing in parkinson's disease. Journal of the Neurological Sciences, 149, 47–56.
  • Tessa, C., Giannelli, M., Della Nave, R., Lucetti, C., Berti, C., Ginestroni, A., … Mascalchi, M. (2008). A whole-brain analysis in de novo parkinson disease. American Journal of Neuroradiology, 29, 674–680.
  • Truong, D. D., & Wolters, E. C. (2009). Recognition and management of parkinson's disease during the premotor (prodromal) phase. Expert Review of Neurotherapeutics, 9, 847–857.
  • Tyne, H L, Medley, G, Ghadiali, E, & Steiger, M J. (2004). Gambling in parkinson's disease. Movement Disorders, 19(Suppl 9), S195.
  • Vaillancourt, D. E., Prodoehl, J., Verhagen Metman, L., Bakay, R. A., & Corcos, D. M. (2004). Effects of deep brain stimulation and medication on bradykinesia and muscle activation in parkinson's disease. Brain, 127, 491–504.
  • Vaillancourt, D. E., Schonfeld, D., Kwak, Y., Bohnen, N. I., & Seidler, R. (2013). Dopamine overdose hypothesis: Evidence and clinical implications. Movement Disorders, 28, 1920–1929.
  • Verbruggen, F., & Logan, G. D. (2009). Proactive adjustments of response strategies in the stop-signal paradigm. Journal of Experimental Psychology: Human Perception and Performance, 35, 835–854.
  • Voon, V., Hassan, K., Zurowski, M., Duff-Canning, S., De Souza, M., Fox, S., … Miyasaki, J. (2006). Prospective prevalence of pathologic gambling and medication association in parkinson disease. Neurology, 66, 1750–1752.
  • Voon, V., Potenza, M. N., & Thomsen, T. (2007). Medication-related impulse control and repetitive behaviors in parkinson's disease. Current Opinion in Neurology, 20, 484–492.
  • Voon, V., Thomsen, T., Miyasaki, J. M., de Souza, M., Shafro, A., Fox, S. H., … Zurowski, M. (2007). Factors associated with dopaminergic drug-related pathological gambling in parkinson disease. Archives of Neurology, 64, 212–216.
  • Weintraub, D. (2009). Impulse control disorders in parkinson's disease: Prevalence and possible risk factors. Parkinsonism and Related Disorders, 15(Suppl 3), S110–113.
  • Weintraub, D., Koester, J., Potenza, M. N., Siderowf, A. D., Stacy, M., Voon, V., … Lang, A. E. (2010). Impulse control disorders in parkinson disease: A cross-sectional study of 3090 patients. Archives of Neurology, 67, 589–595.
  • Weintraub, D., Papay, K., & Siderowf, A. (2013). Screening for impulse control symptoms in patients with de novo parkinson disease: A case-control study. Neurology, 80, 176–180.
  • Weintraub, D., Siderowf, A. D., Potenza, M. N., Goveas, J., Morales, K. H., Duda, J. E., … Stern, M. B. (2006). Dopamine agonist use is associated with impulse control disorders in parkinson's disease. Archives of Neurology, 63, 969–973.
  • Williams-Gray, C. H., Hampshire, A., Barker, R. A., & Owen, A. M. (2008). Attentional control in parkinson's disease is dependent on comt val 158met genotype. Brain, 131, 397–408.
  • Williams-Gray, C. H., Hampshire, A., Robbins, T. W., Owen, A. M., & Barker, R. A. (2007). Catechol o-methyltransferase val158met genotype influences frontoparietal activity during planning in patients with parkinson's disease. Journal of Neuroscience, 27, 4832–4838.
  • Wylie, S. A., Claassen, D. O., Huizenga, H. M., Schewel, K. D., Ridderinkhof, K. R., Bashore, T. R., & van den Wildenberg, W. P. (2012). Dopamine agonists and the suppression of impulsive motor actions in parkinson disease. Journal of Cognitive Neuroscience, 24, 1709–1724.
  • Yamanaka, K., & Nozaki, D. (2013). Neural mechanisms underlying stop-and-restart difficulties: Involvement of the motor and perceptual systems. PLoS One, 8, e82272.
  • Zandbelt, B. B., Bloemendaal, M., Hoogendam, J. M., Kahn, R. S., & Vink, M. (2013). Transcranial magnetic stimulation and functional mri reveal cortical and subcortical interactions during stop-signal response inhibition. Journal of Cognitive Neuroscience, 25, 157–174.
  • Zandbelt, B. B., & Vink, M. (2010). On the role of the striatum in response inhibition. PLoS One, 5(11).
  • Zigmond, M. J., Abercrombie, E. D., Berger, T. W., Grace, A. A., & Stricker, E. M. (1990). Compensations after lesions of central dopaminergic neurons: Some clinical and basic implications. Trends in Neurosciences, 13, 290–296.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.