316
Views
9
CrossRef citations to date
0
Altmetric
RESEARCH ARTICLES

Retention of Implicit Sequence Learning in Persons Who Stutter and Persons With Parkinson's Disease

&
Pages 124-141 | Received 31 Dec 2013, Accepted 01 Sep 2014, Published online: 04 Nov 2014

REFERENCES

  • Agostino, R., Curra, A., Soldati, G., Dinapoli, L., Chiacchiari, L., Modugno, N., … Berardelli, A. (2004). Prolonged practice is of scarce benefit in improving motor performance in Parkinson's disease. Movement Disorders, 19, 1285–1293.
  • Beck, A. T., Ward, C. H., Mendelson, M., Mock, J., & Erbaugh, J. (1961). An inventory for measuring depression. Archives of General Psychiatry, 4, 53–63.
  • Benecke, R., Rothwell, J. C., Dick, J. P. R., Day, B. L., & Marsden, C. D. (1986). Performance of simultaneous movements in patients with Parkinson's disease. Brain, 109, 739–757.
  • Blomgren, M., Roy, N., Callister, T., & Merrill, R. M. (2005). Intensive stuttering modification therapy: A multidimensional assessment of treatment outcomes. Journal of Speech, Language, and Hearing Research, 48, 509–523.
  • Brashers-Krug, T., Shadmehr, R., & Bizzi, E. (1996). Consolidation in human motor memory. Nature, 382, 252–255.
  • Carbon, M., & Eidelberg, D. (2006). Functional imaging of sequence learning in Parkinson's disease. Journal of Neurological Science, 248, 72–77.
  • Chang, S., Erikson, K., Ambrose, N, Hasegawa-Johnson, M., & Ludlow, C. (2008). Brain anatomy differences in childhood stuttering. Neuroimage, 46, 201–212.
  • Chang, S., Horwitz, B, Ostuni, J, Reynolds, R., & Ludlow, C. (2011). Evidence of left inferior frontal-premotor structural and functional connectivity deficits in adults who stutter. Cerebral Cortex, 21, 2507–2518.
  • Doyon, J., & Benali, H. (2005). Reorganization and plasticity in the adult brain during learning of motor skills. Current Opinions in Neurobiology, 15, 161–167.
  • Doyon, J., Laforce, R., Bouchard, G., Gaudreau, D., Roy, J., Poirier, M., … Bouchard, J. P. (1998). Role of the striatum, cerebellum and frontal lobes in the automatization of a repeated visuomotor sequence of movements. Neuropsychologia, 36, 625–641.
  • Eimer, M., Goschke, T., Schlaghecken, F., & Sturmer, B. (1996). Explicit and implicit learning of event sequences: Evidence from event-related brain potentials. Journal of Experimental Psychology: Learning, Memory and Cognition, 22, 970–987.
  • Exner, C., Koschack, J., & Irle, E. (2002). The differential role of premotor frontal cortex and basal ganglia in motor sequence learning: Evidence from focal basal ganglia lesions. Learning and Memory, 9, 376–386.
  • Fahn, S., Elton, R. L., & Members of the UPDRS Development Committee (1987). Unified Parkinson's disease rating scale. In S. Fahn, C. D. Marsden, D. B. Calne, & M. Goldstein (Eds.), Recent development in Parkinson's disease (pp. 153–163). Florham Park, NJ: Macmillan Healthcare Information.
  • Ferraro, F. R., Balota, D. A., & Connor, L. T. (1993). Implicit memory and the formation of new associations in nondemented Parkinson's disease individuals and individuals with senile dementia of the Alzheimer type: A serial reaction time (SRT) investigation. Brain and Cognition, 21, 163–180.
  • Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 3, 189–198.
  • Ghilardi, M. F., Feigin, A. S., Battaglia, F., Silvestri, G., Mattis, P., Eidelberg, D., & Di Rocco, A. (2007). L-Dopa infusion does not improve explicit sequence learning in Parkinson's disease. Parkinsonism and Related Disorders, 13, 146–151.
  • Grafton, S. T., Hazeltine, E., & Ivry, R. B., (2002). Motor sequence learning with the nondominant left hand: A PET functional imaging study. Experimental Brain Research, 146, 369–378.
  • Graybiel, A. M. (1998). The basal ganglia and chunking of action repertoires. Neurobiology of Learning and Memory, 70, 119–136.
  • Harrington, D. L., Haaland, K. Y., Yeo, R. A., & Marder, E. (1990). Procedural memory in Parkinson's disease: Impaired motor but not visuoperceptual learning. Journal of Clinical & Experimental Neuropsychology, 12, 323–339.
  • Hauptmann, B., & Karni, A. (2002). From primed to learn: The saturation of repetition priming and the induction of long-term memory. Cognitive Brain Research, 13, 313–322.
  • Helmuth, L., Mayr, U., & Daum, I. (2000). Sequence learning in patients with Parkinson's disease: A comparison between spatial-attention and number-response sequences. Neuropsychologia, 38, 1143–1451.
  • Hoehn, M., & Yahr, M. (1967). Parkinsonism: onset, progression and mortality. Neurology, 17, 427–442.
  • Jackson, G. M., Jackson, S. R., Harrison, J., Henderson, L., & Kennard, C. (1995). Serial reaction time learning in Parkinson's disease: evidence for a procedural learning deficit. Neuropsychologia, 33, 577–593.
  • Kawai, H., Kawamura, M., & Kawachi, J. (1999). Procedural memory in a patient with progressive supranuclear palsy and Alzheimer's disease: impairment of long-term retention following subcortical degeneration. Japanese Journal of Neuropsychology, 15, 229–237 (in Japanese).
  • Max, L. (2004). Stuttering and internal models for sensorimotor control: A theoretical perspective to generate testable hypotheses. In B. Maassen, R. D. Kent, H. F. M. Peters, P. H. H. M. van Lieshout, & W. Hulstijn (Eds.), Speech motor control in normal and disordered speech (pp. 357–388). Oxford, England: Oxford University Press.
  • Max, L., & Baldwin, C. J. (2010). The role of motor learning in stuttering adaptation: repeated versus novel utterances in a practice-retention paradigm. Journal of Fluency Disorders, 35, 33–43.
  • Mentis, M. J., Dhawan, V., Feigin, A., Delalot, D., Zgaljardic, D., Edwards, C., & Eidelberg, D. (2003). Early stage Parkinson's disease patients and normal volunteers: Comparative mechanisms of sequence learning. Human Brain Mapping, 20, 246–258.
  • Mochizuki-Kawai, H., Kawamura, M., Hasegawa, Y., Mochizuki, S., Oeda, R., Yamanaka, K., & Tagaya, H. (2004). Deficits in long-term retention of learned motor skills in patients with cortical or subcortical degeneration. Neuropsychologia, 42, 1858–1863.
  • Namasivayam, A. K., & van Lieshout, P. (2008). Investigating speech motor practice and learning in people who stutter. Journal of Fluency Disorders, 33, 32–51.
  • Neurobehavioral Systems. (2004). Presentation (Version 0.80) [Computer software]. Albany, CA: Author.
  • Nissen, M., & Bullemer, P. (1987). Attentional requirements of learning: evidence from performance measures. Cognitive Psycholology, 19, 1–32.
  • Oldfield, R. (1971). The assessment and analysis of handedness: The Edinburgh Inventory. Neuropsychologia, 9, 97–113.
  • Peigneux, P., Maquet, P., Meulemans, T., Destrebecqz, A., Laureys, S., Degueldre, C., … Cleeremans, A. (2000). Striatum forever, despite sequence learning variability: a random effect analysis of PET data. Human Brain Mapping, 10, 179–194.
  • Portney, L. G., & Watkins, M. P. (1993). Foundations of clinical research: Applications to practice. Stamford, CT: Appleton & Lange.
  • Riley, G. (2009). A stuttering severity instrument (4th Ed.). Austin, TX: Pro-Ed.
  • Rostami, H. R., & Ashayeri, H. (2009). Effects of motor skill practice on reaction time and learning retention in Parkinson's disease. Neurology India, 57, 768–771.
  • Russeler, J., & Rosler, F. (2000). Implicit and explicit learning of event sequences: evidence for distinct coding of perceptual and motor representations. Acta Psychologica, 104, 45–67.
  • Saint-Cyr, J. A. (2003). Frontal-striatal circuit functions: Context, sequence, and consequence. Journal of the International Neuropsychological Society, 9, 103–127.
  • Saint-Cyr, J. A., Taylor, A., & Lang, A. (1988). Procedural learning and neostriatal dysfunction in man. Brain, 111, 941–959.
  • Shadmehr, R., & Brashers-Krug, T. (1997). Functional stages in the formation of human long-term motor memory. Journal of Neuroscience, 17, 409–419.
  • Siegert, R. J., Harper, D. N., Cameron, F. B., & Abernethy, D. (2002). Self-initiated versus externally cued reaction times in Parkinson's disease. Journal of Clinical Experimental Neuropsychology, 24, 146–153.
  • Siegert, R. J., Taylor, K. D., Weatherall, M., & Abernethy, D. A. (2006). Is implicit sequence learning impaired in Parkinson's disease? A meta-analysis. Neuropsychology, 20, 490–495.
  • SIL. (2007). Speech analyzer (Version 3.0.1.) [Computer Software]. Dallas, TX: Author.
  • Smiley-Oyen, A. L., Lowry, K. A., & Kerr, J. P. (2007). Planning and control of sequential rapid aiming in adults with Parkinson's disease. Journal of Motor Behavior, 39, 103–114.
  • Smith, J. G., & McDowall, J. (2004). Impaired higher order implicit sequence learning on the verbal version of the serial reaction time task in patients with Parkinson's disease. Neuropsychology, 18, 679–691.
  • Smith, J. G., Siegert, R., McDowall, J., & Abernethy, D. (2001). Preserved implicit learning on both the serial reaction time task and artificial grammar in patients with Parkinson's Disease. Brain and Cognition, 45, 378–391.
  • Smits-Bandstra, S. (2010). Methodological considerations in the measurement of reaction time of persons who stutter. Journal of Fluency Disorders, 35, 19–32.
  • Smits-Bandstra, S., & De Nil, L. F. (2007). Sequence skill learning in persons who stutter: Implications for cortico-striato-thalamo-cortical dysfunction. Journal of Fluency Disorders, 32, 251–278.
  • Smits-Bandstra, S., & De Nil, L. F. (2009). Speech skill learning of persons who stutter and fluent speakers under single and dual task conditions. Journal of Clinical Linguistics and Phonetics, 23, 38–57.
  • Smits-Bandstra, S., & De Nil, L. F. (2013). Chunking of persons who stutter and fluent speakers during sequencing. Clinical Linguistics & Phonetics, 27, 72–84.
  • Smits-Bandstra, S., De Nil, L. F., & Rochon, E. (2006). The transition to increased automaticity during finger sequence learning in adult males who stutter. Journal of Fluency Disorders, 31, 22–42.
  • Smits-Bandstra, S., De Nil, L. F., & Saint-Cyr, J. A. (2006). Speech and nonspeech sequence skill learning in adults who stutter. Journal of Fluency Disorders, 31, 116–131.
  • Smits-Bandstra, S., & Gracco, V. (2013). Speech sequence learning in persons who stutter and persons with Parkinson's disease. Journal of Motor Behavior, 45, 381–393.
  • Sommer, M., Grafman, J., Clark, K., & Hallett, M. (1999). Learning in Parkinson's disease: Eye blink condition, declarative learning, and procedural learning. Journal of Neurology, Neurosurgery, and Psychiatry, 67, 27–43.
  • Sommer, M., Koch, M. A., Paulus, W., Weiller, C., & Buchel, C. (2002). Disconnection of speech-relevant brain areas in persistent developmental stuttering. Lancet, 360, 380–383.
  • Vakil, E., & Herishanu-Naaman, S. (1998). Declarative and procedural learning in Parkinson's disease patients having tremor or bradykinesia as the predominant symptom. Cortex, 34, 611–620.
  • Vakil, E., Kahan, S., Huberman, M., & Osimani, A. (2000). Motor and non-motor sequence learning in patients with basal ganglia lesions: the case of serial reaction time (SRT). Neuropsychologia, 38, 1–10.
  • Watkins, K., Smith, S. M., Davis, S., & Howell, P. (2008). Structural and functional abnormalities of the motor system in developmental stuttering. Brain, 131, 50–59.
  • Werheid, K., Ziessler, M., Nattkemper, D., & Yves von Cramon, D. (2003). Sequence learning in Parkinson's disease: The effect of spatial stimulus-response compatibility. Brain and Cognition, 52, 239–249.
  • Weschler, D. A. (1997). Wechsler Adult Intelligence Scale-III. New York, NY: Psychological Corporation.
  • Westwater, H., McDowall, J., Siegert, R., Mossman, S., & Abernethy, D. (1998). Implicit learning in Parkinson's disease: Evidence from a verbal version of the serial reaction time task. Journal of Clinical and Experimental Neuropsychology, 20, 413–418.
  • Wilkinson, L., & Jahanshahi, M. (2007). The striatum and probabilistic implicit sequence learning. Brain Research, 1137, 117–130.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.