2,154
Views
21
CrossRef citations to date
0
Altmetric
RESEARCH ARTICLE

Greater Intermanual Transfer in the Elderly Suggests Age-Related Bilateral Motor Cortex Activation Is Compensatory

, , , &
Pages 47-55 | Received 01 Mar 2014, Accepted 23 Oct 2014, Published online: 09 Jan 2015

REFERENCES

  • Bernard, J., & Seidler, R. (2012). Evidence for motor cortex dedifferentiation in older adults. Neurobiology of Aging, 33, 1890–1899.
  • Cabeza, R. (2002). Hemispheric asymmetry reduction in older adults: The HAROLD model. Psychology of Aging, 17, 85–100.
  • Goble, D., Coxon, J., Wenderoth, N., Van Impe, A., & Swinnen, S. (2009). Proprioceptive sensibility in the elderly: Degeneration, functional consequences and plastic-adaptive processes. Neuroscience and Biobehavioral Reviews, 33, 271–278.
  • Grady, C. (2013). Trends in neurocognitive aging. Nature Reviews Neuroscience, 13, 491–505.
  • Grafton, S., Schmitt, P., Van Horn, J., & Diedrichsen, J. (2008). Neural substrates of visuomotor learning based on improved feedback control and prediction. Neuroimage, 39, 1383–1395.
  • Graziadio, S., Basu, A., Zappasodi, F., Tecchio, F., & Eyre, J. A. (2010). Developmental tuning and decay in senescence of oscillations linking the corticospinal system. Journal of Neuroscience, 30, 3663–3674.
  • Graziadio, S., Davison, R., Shalabi, K., Sahota, K., Ushaw, G., Morgan, G., & Eyre, J. A. (2014). Bespoke video games to provide early response markers to identify the optimal strategies for maximising rehabilitation. In Proceeding SAC ’14: Proceedings of the 29th Annual ACM Symposium on Applied Computing (pp. 20–;24).
  • Hinder, M., Carroll, T., & Summers, J. (2013). Inter-limb transfer of ballistic motor skill following non-dominant limb training in young and older adults. Experimental Brain Research, 227, 19–29.
  • Hinder, M., Schmidt, M., Garry, M., Carroll, T., & Summers, J. (2011). Absence of cross-limb transfer of performance gains following ballistic motor practice in older adults. Journal of Applied Physiology, 110, 166–175. doi:10.1152/japplphysiol.00958.2010
  • Hutchinson, S., Kobayashi, M., Horkan, C., Pascual-Leone, A., Alexander, M., & Schlaug, G. (2002). Age-related differences in movement representation. Neuroimage, 17, 1720–1728.
  • Inuggi, A., Amato, N., Magnani, G., Gonzalez-Rosa, J., Chieffo, R., Comi, G., & Leocani, L (2011). Cortical control of unilateral simple movement in healthy aging. Neurobiology of Aging, 32, 524–538.
  • Langan, J., & Seidler, R. D. (2011). Age differences in spatial working memory contributions to visuomotor adaptation and transfer. Behavioral Brain Research, 225, 160–168.
  • Lazarus, J. A. C., & Haynes, J. M. (1997). Isometric pinch force control and learning in older adults. Experimental Aging Research, 23, 179–199.
  • Lindenberger, U., & Baltes, P. (1997). Intellectual functioning in old and very old age: Cross-sectional results from the Berlin Aging Study. Psychology of Aging, 12, 410–432
  • Mattay, V., Fera, F., Tessitore, A., Hariri, A., Das, S., Callicott, J., & Weinberger, D. (2002). Neurophysiological correlates of age-related changes in human motor function. Neurology, 58, 630–635.
  • McGregor, K., Craggs, J., Benjamin, M., Crosson, B., & White, K. (2009). Age-related changes in motor control during unimanual movements. Brain Imaging Behavior, 3, 317–331.
  • McIntosh, A., Sekuler, A., Penpeci, C., Rajah, M., Grady, C., Sekuler, R., & Bennett, P. J. (1999). Recruitment of unique neural systems to support visual memory in normal aging. Current Biology, 9, 1275–1278.
  • Mehta, B., & Schaal, S. (2002). Forward models in visuomotor control. Journal of Neurophysiology, 88, 942–953.
  • Naccarato, M., Calautti, C., Jones, P., Day, D., Carpenter, T., & Baron, J. (2006). Does healthy aging affect the hemispheric activation balance during paced index-to-thumb opposition task? An fMRI study. Advances in Neurology, 32, 1250–1256.
  • Nazarpour, K., Barnard, A., & Jackson, A. (2012). Flexible cortical control of task-specific muscle synergies. Journal of Neuroscience, 32, 12349–12360.
  • Noble, J., Eng, J., Kokotilo, K., & Boyd, L. (2011). Aging effects on the control of grip force magnitude: An fMRI study. Experimental Gerontology, 46, 453–461.
  • Pan, Z., & Van Gemmert, A. (2013). The effects of aging on the asymmetry of inter‑limb transfer in a visuomotor task. Experimental Brain Research, 229, 621–633.
  • Panzer, S., Gruetzmacher, N., Fries, U., Krueger, M., & Shea, C. (2011). Age-related effects in interlimb practice on coding complex movement sequences. Human Movement Science, 30, 459–474.
  • Parikh, P., & Cole, K. (2013). Transfer of learning between hands to handle a novel object in old age. Experimental Brain Research, 227, 9–18.
  • Pereira, E., Raja, K., & Gangavalli, R. (2011). Effect of training on interlimb transfer of dexterity skills in healthy adults. American Journal of Physical Medicine and Rehabilitation, 90, 25–34.
  • Perez, M., Wise, S., Willingham, D., & Cohen, L. (2007). Neurophysiological mechanisms involved in transfer of procedural knowledge. Journal of Neuroscience, 27, 1045–1053.
  • Pipereit, K., Bock, O., & Vercher, J. (2006). The contribution of proprioceptive feedback to sensorimotor adaptation. Experimental Brain Research, 174, 45–52.
  • Radhakrishnan, S., Baker, S., & Jackson, A. (2008). Learning a novel myoelectric-controlled interface task. Journal of Neurophysiology, 100, 2397–2408.
  • Reuter-Lorenz, P., & Cappell, K. (2008). Neurocognitive aging and the compensation hypothesis. Current Directions in Psychological Science, 17, 177–182.
  • Rosenkranz, K., & Rothwell, J. (2012). Modulation of proprioceptive integration in the motor cortex shapes human motor learning. Journal of Neuroscience, 32, 9000–9006.
  • Sailer, A., Dichgans, J., & Gerloff, C. (2000). The influence of normal aging on the cortical processing of a simple motor task. Neurology, 55, 979–985.
  • Seidler, R. (2007). Aging affects motor learning but not savings at transfer of learning. Learning Memory, 14, 17–21.
  • Seidler, R., Noll, D., & Thiers, G. (2004). Feedforward and feedback processes in motor control. Neuroimage, 22, 1775–1783.
  • Shadmehr, R., Smith, M., & Krakauer, J. (2010). Error correction, sensory prediction, and adaptation in motor control. Annual Reviews of Neuroscience, 33, 89–108.
  • Shea, C., Kovacs, A., & Panzer, S. (2011). The coding and inter-manual transfer of movement sequences. Frontiers in Psychology, 2, 52–52.
  • Ullsperger, M., Harsay, H., Wessel, J., & Ridderinkhof, K. (2010). Conscious perception of errors and its relation to the anterior insula. Brain Structure and Function, 214, 629–643.
  • Vincent, J., Kahn, I., Snyder, A., Raichle, M., & Buckner, R. (2008). Evidence for a frontoparietal control system revealed by intrinsic functional connectivity. Journal of Neurophysiology, 100, 3328–3342.
  • Wang, J., Przybyla, A., Wuebbenhorst, K., Haaland, K., & Sainburg, R. (2011). Aging reduces asymmetries in interlimb transfer of visuomotor adaptation. Experimental Brain Research, 210, 283–290.
  • Ward, N. (2006). Compensatory mechanisms in the aging motor system. Ageing Research Reviews, 5, 239–254.
  • Ward, N., & Frackowiak, R. (2003). Age-related changes in the neural correlates of motor performance. Brain, 126, 873–888.
  • Ward, N., Swayne, O., & Newton, J. (2008). Age-dependent changes in the neural correlates of force modulation: An fMRI study. Neurobiology of Aging, 29, 1434–1446.
  • Wright, Z, A., Rymer, W. Z., & Slutzky, M. W. (2013). Reducing Abnormal Muscle coactivation after stroke using a myoelectric-computer interface: A pilot study. Neurorehabilitation and Neural Repair, 28, 443–451.
  • Wu, T., & Hallett, M. (2005). The influence of normal human ageing on automatic movements. Journal of Physiology, 255, 605–615.
  • Yordanova, J., Kolev, V., Hohnsbein, J., & Falkenstein, M. (2004). Sensorimotor slowing with ageing is mediated by a functional dysregulation of motor-generation processes: Evidence from high-resolution event-related potentials. Advances in Neurology, 127, 351–362.
  • Zarahn, E., Rakitin, B., Abela, D., Flynn, J., & Stern, Y. (2007). Age-related changes in brain activation during a delayed item recognition task. Neurobiology of Aging, 28, 784–798.