204
Views
3
CrossRef citations to date
0
Altmetric
RESEARCH ARTICLES

Task-Switching Effects for Visual and Auditory Pro- and Antisaccades: Evidence for a Task-Set Inertia

, , &
Pages 319-327 | Received 22 Jul 2014, Accepted 24 Oct 2014, Published online: 13 Jan 2015

REFERENCES

  • Allport, D. A., Styles, E. A., & Hsieh, S. (1994). Shifting intentional set: Exploring the dynamic control of tasks. In C. Umilta, & M. Moscovitch (Eds.), Attention and performance XV (pp. 421–452). Cambridge, MA: Routledge.
  • Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10, 433–436.
  • Brown, M. R., Vilis, T., & Everling, S. (2007). Frontoparietal activation with preparation for antisaccades. Journal of Neurophysiology, 98, 1751–1762.
  • Chan, J. L., & DeSouza, J. F. (2013). The effects of attentional load on saccadic task switching. Experimental Brain Research, 227, 301–309.
  • Cumming, G., & Finch, S. (2005). Inference by eye: Confidence intervals and how to read pictures of data. American Psychologist, 60, 170–180.
  • Curtis, C. E., & D’Esposito, M. (2003). Success and failure suppressing reflexive behavior. Journal of Cognitive Neuroscience, 15, 409–418.
  • Dafoe, J. M., Armstrong, I. T., & Munoz, D. P. (2007). The influence of stimulus direction and eccentricity on pro- and anti-saccades in humans. Experimental Brain Research, 179, 563–570.
  • Desimone, J. C., Weiler, J., Aber, G. S., & Heath, M. (2014). The unidirectional prosaccade switch-cost: Correct and error antisaccades differentially influence the planning times for subsequent prosaccades. Vision Research, 96C, 17–24.
  • DeSouza, J. F., Menon, R. S., & Everling, S. (2003). Preparatory set associated with pro-saccades and anti-saccades in humans investigated with event-related fMRI. Journal of Neurophysiology, 89, 1016–1023.
  • Edelman, J. A., & Goldberg, M. E. (2001). Dependence of saccade-related activity in the primate superior colliculus on visual target presence. Journal of Neurophysiology, 86, 676–691.
  • Everling, S., Dorris, M. C., Klein, R. M., & Munoz, D. P. (1999). Role of primate superior colliculus in preparation and execution of anti-saccades and pro-saccades. The Journal of Neuroscience, 19, 2740–2754.
  • Everling, S., Dorris, M. C., & Munoz, D. P. (1998). Reflex suppression in the anti-saccade task is dependent on prestimulus neural processes. Journal of Neurophysiology, 80, 1584–1589.
  • Everling, S., & Johnston, K. (2013). Control of the superior colliculus by the lateral prefrontal cortex. Philosophical Transactions of the Royal Society of London, Series B, Biological Sciences, 368, 20130068.
  • Fischer, B., & Weber, H. (1992). Characteristics of “anti” saccades in man. Experimental Brain Research, 89, 415–424.
  • Flanders, M., Helms Tillery, S. I., & Soechting, J. F. (1992). Early stages in a sensorimotor transformation. Behavioral and Brain Sciences, 15, 309–362.
  • Ford, K. A., Goltz, H. C., Brown, M. R., & Everling, S. (2005). Neural processes associated with antisaccade task performance investigated with event-related fMRI. Journal of Neurophysiology, 94, 429–440.
  • Gillen, C., & Heath, M. (2014). Perceptual averaging governs antisaccade endpoint bias. Experimental Brain Research, 232, 3201–3210. doi:10.1007/s00221-014-4010-1
  • Goossens, H. H., & van Opstal, A. J. (1999). Influence of head position on the spatial representation of acoustic targets. Journal of Neurophysiology, 81, 2720–2736.
  • Hallett, P. E. (1978). Primary and secondary saccades to goals defined by instructions. Vision Research, 18, 1279–1296.
  • Heath, M., Bell, J., Holroyd, C. B., & Krigolson, O. (2012). Electroencephalographic evidence of vector inversion in antipointing. Experimental Brain Research, 221, 19–26.
  • Heath, M., Weiler, J., Marriott, K., & Welsh, T. N. (2011). Vector inversion diminishes the online control of antisaccades. Experimental Brain Research, 209, 117–127.
  • Hussein, S., Johnston, K., Belbeck, B., Lomber, S. G., & Everling, S. (2014). Functional specialization within macaque dorsolateral prefrontal cortex for the maintenance of task rules and cognitive control. Journal of Cognitive Neuroscience, 26, 1918–1927. doi:10.1162/jocn_a_00608
  • Irwin, D. E., & Carlson-Radvansky, L. A. (1996). Cognitive suppression during saccadic eye movements. Psychological Science, 7, 83–88.
  • Jay, M. F., & Sparks, D. L. (1987). Sensorimotor integration in the primate superior colliculus. I. Motor convergence. Journal of Neurophysiology, 57, 22–34.
  • Johnston, K., Koval, M. J., Lomber, S. G., & Everling, S. (2014). Macaque dorsolateral prefrontal cortex does not suppress saccade-related activity in the superior colliculus. Cerebral Cortex, 24, 1373–1388.
  • Karn, K. S., Møller, P., & Hayhoe, M. M. (1997). Reference frames in saccadic targeting. Experimental Brain Research, 115, 267–282.
  • Krappmann, P., Everling, S., & Flohr, H. (1998). Accuracy of visually and memory-guided antisaccades in man. Vision Research, 38, 2979–2985.
  • Loftus, G. R., & Masson, M. E. (1994). Using confidence intervals in within-subject designs. Psychonomic Bulletin & Review, 1, 476–490.
  • Martin, C. D., Barcelo, F., Hernandez, M., & Costa, A. (2011). The time course of the asymmetrical “local” switch cost: Evidence from event-related potentials. Biological Psychology, 86, 210–218.
  • Middlebrooks, J. C., & Green, D. M. (1991). Sound localization by human listeners. Annual Review of Psychology, 42, 135–59.
  • Munoz, D. P., & Everling, S. (2004). Look away: The anti-saccade task and the voluntary control of eye movement. Nature Reviews Neuroscience, 5, 218–228.
  • Niemeier, M., & Karnath, H. O. (2003). Stimulus-driven and voluntary saccades are coded in different coordinate systems. Current Biology, 13, 585–589.
  • Olk, B., & Kingstone, A. (2003). Why are antisaccades slower than prosaccades? A novel finding using a new paradigm. Neuroreport, 14, 151–155.
  • Pierrot-Deseilligny, C. H., Rivaud, S., Gaymard, B., & Agid, Y. (1991). Cortical control of reflexive visually-guided saccades. Brain, 114, 1473–1485.
  • Ploner, C. J., Gaymard, B. M., Rivaud-Péchoux, S., & Pierrot-Deseilligny, C. (2005). The prefrontal substrate of reflexive saccade inhibition in humans. Biological Psychiatry, 57, 1159–1165.
  • Pouget, P., Logan, G. D., Palmeri, T. J., Boucher, L., Paré, M., & Schall, J. D. (2011). Neural basis of adaptive response time adjustment during saccade countermanding. The Journal of Neuroscience, 3, 12604–12612.
  • Price, J. L. (2008). Multisensory convergence in the orbital and ventrolateral prefrontal cortex. Chemosensory Perception, 1, 103–109.
  • Reuter-Lorenz, P. A., Herter, T. M., & Guitton, D. (2011). Control of reflexive saccades following hemispherectomy. Journal of Cognitive Neuroscience, 23, 1368–1378.
  • Schlag-Rey, M., Amador, N., Sanchez, H., & Schlag, J. (1997). Antisaccade performance predicted by neuronal activity in the supplementary eye field. Nature, 390, 398–401.
  • Seaman, M. A., Levin, J. R., & Serlin, R. C. (1991). New developments in pairwise multiple comparisons: Some powerful and practicable procedures. Psychological Bulletin, 110, 577–586.
  • Van der Stigchel, S., van Koningsbruggen, M., Nijboer, T. C., List, A., & Rafal, R. D. (2012). The role of the frontal eye fields in the oculomotor inhibition of reflexive saccades: Evidence from lesion patients. Neuropsychologia, 50, 198–203.
  • Weiler, J., Hassell, C., Krigolson, O., & Heath, M. (in press). The unidirectional prosaccade switch-cost: Electroencephalographic evidence of task-set inertia in oculomotor control. Behavioral Brain Research
  • Weiler, J., & Heath, M. (2012a). The prior-antisaccade effect influences the planning and online control of prosaccades. Experimental Brain Research, 216, 545–552.
  • Weiler, J., & Heath, M. (2012b). Task-switching in oculomotor control: Unidirectional switch-cost when alternating between pro- and antisaccades. Neuroscience Letters, 530, 150–154.
  • Weiler, J., & Heath, M. (2014a). Repetitive antisaccade execution does not increase the unidirectional prosaccade switch-cost. Acta Psychologica, 146, 67–72.
  • Weiler, J., & Heath, M. (2014b). Oculomotor task-switching: alternating from a non-standard to a standard response yields the unidirectional prosaccade switch-cost. Journal of Neurophysiology, 112, 2176–2184.
  • Weiler, J., Mitchell, T., & Heath, M. (2014). Response suppression delays the planning of subsequent stimulus-driven saccades. PloS One, 9, e86408.
  • Wurtz, R. H., & Albano, J. E. (1980). Visual-motor function of the primate superior colliculus. Annual Review of Neuroscience, 3, 189–226
  • Wylie, G., & Allport, A. (2000). Task switching and the measurement of “switch costs”. Psychological Research, 63, 212–233.
  • Yao, L., & Peck, C. K. (1997). Saccadic eye movements to visual and auditory targets. Experimental Brain Research, 115, 25–34.
  • Zahn, J. R., Abel, L. A., Dell ‘Osso, L. F., & Daroff, R. B. (1979). The audioocular response: Intersensory delay. Sensory Processes, 3, 60–65.
  • Zambarbieri, D., Schmid, R., Magenes, G., & Prablanc, C. (1982). Saccadic responses evoked by presentation of visual and auditory targets. Experimental Brain Research, 47, 417–427.
  • Zhang, M., & Barash, S. (2000). Neuronal switching of sensorimotor transformations for antisaccades. Nature, 408, 971–975.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.