2,050
Views
62
CrossRef citations to date
0
Altmetric
REVIEW ARTICLE

The Effects of Acute Aerobic Exercise on the Primary Motor Cortex

&
Pages 328-339 | Received 05 Aug 2014, Accepted 29 Oct 2014, Published online: 07 Jan 2015

REFERENCES

  • Antal, A., Chaieb, L., Moliadze, V., Monte-Silva, K., Poreisz, C., Thirugnanasambandam, N., … Paulus, W. (2010). Brain-derived neurotrophic factor (BDNF) gene polymorphisms shape cortical plasticity in humans. Brain Stimulation, 3, 230–237. doi:10.1016/j.brs.2009.12.003
  • Barros, L. F. (2013). Metabolic signaling by lactate in the brain. Trends in Neurosciences, 36, 396–404. doi:10.1016/j.tins.2013.04.002
  • Batsikadze, G., Paulus, W., Kuo, M.-F., & Nitsche, M. (2013). Effect of serotonin on paired associative stimulation-induced plasticity in the human motor cortex. Neuropsychopharmacology, 38, 2260–2267. doi:10.1038/npp.2013.127
  • Black, I. B. (1999). Trophic regulation of synaptic plasticity. Journal of Neurobiology, 41, 108–118.
  • Boumezbeur, F., Petersen, K. F., Cline, G. W., Mason, G. F., Behar, K. L., Shulman, G. I., & Rothman, D. L. (2010). The contribution of blood lactate to brain energy metabolism in humans measured by dynamic 13C nuclear magnetic resonance spectroscopy. Journal of Neuroscience , 30, 13983–13991. doi:10.1523/JNEUROSCI.2040–10.2010
  • Brümmer, V., Schneider, S., Strüder, H. K., & Askew, C. D. (2011). Primary motor cortex activity is elevated with incremental exercise intensity. Neuroscience, 181, 150–62.
  • Chaouloff, F. (1997). Effects of acute physical exercise on central serotonergic systems. Medicine and Science in Sports and Exercise, 29, 58–62.
  • Cheeran, B., Talelli, P., Mori, F., Koch, G., Suppa, A., Edwards, M., … Rothwell, J. C. (2008). A common polymorphism in the brain-derived neurotrophic factor gene (BDNF) modulates human cortical plasticity and the response to rTMS. Journal of Physiology, 586, 5717–5725. doi:10.1113/jphysiol.2008.159905
  • Chen, C.-Y., Bechtold, A. G., Tabor, J., & Bonham, A. C. (2009). Exercise reduces GABA synaptic input onto nucleus tractus solitarii baroreceptor second-order neurons via NK1 receptor internalization in spontaneously hypertensive rats. Journal of Neuroscience , 29, 2754–2761. doi:10.1523/JNEUROSCI.4413–08.2009
  • Chmura, J., Nazar, K., & Kaciuba-Uściłko, H. (1994). Choice reaction time during graded exercise in relation to blood lactate and plasma catecholamine thresholds. International Journal of Sports Medicine, 15, 172–176. doi:10.1055/s-2007–1021042
  • Christensen, L. O. D., Johannsen, P., Sinkjaer, T., Petersen, N., Pyndt, H. S., & Nielsen, J. B. (2000). Cerebral activation during bicycle movements in man. Experimental Brain Research, 135, 66–72. doi:10.1007/s002210000493
  • Cirillo, J., Hughes, J., Ridding, M., Thomas, P. Q., & Semmler, J. G. (2012). Differential modulation of motor cortex excitability in BDNF Met allele carriers following experimentally induced and use-dependent plasticity. The European Journal of Neuroscience, 36, 2640–2649. doi:10.1111/j.1460–9568.2012.08177.x
  • Clarkson, A. N. (2012). Perisynaptic GABA receptors the overzealous protector. Advances in Pharmacological Sciences, 2012, 708428. doi:10.1155/2012/708428
  • Clarkson, A. N., Huang, B. S., Macisaac, S. E., Mody, I., & Carmichael, S. T. (2010). Reducing excessive GABA-mediated tonic inhibition promotes functional recovery after stroke. Nature, 468, 305–309.
  • Classen, J. (1997). The motor syndrome associated with exaggerated inhibition within the primary motor cortex of patients with hemiparetic. Brain, 120, 605–619.
  • Coco, M., Alagona, G., Rapisarda, G., Costanzo, E., Calogero, R. A., Perciavalle, V., & Perciavalle, V. (2010). Elevated blood lactate is associated with increased motor cortex excitability. Somatosensory & Motor Research, 27, 1–8. doi:10.3109/08990220903471765
  • Davis, J. M., & Bailey, S. P. (1997). Possible mechanisms of central nervous system fatigue during exercise. Medicine and Science in Sports and Exercise, 29, 45–57.
  • Davranche, K., & McMorris, T. (2009). Specific effects of acute moderate exercise on cognitive control. Brain and Cognition, 69, 565–570. doi:10.1016/j.bandc.2008.12.001
  • Delp, M. D., Armstrong, R. B., Godfrey, D. A., Laughlin, M. H., Ross, C. D., & Wilkerson, M. K. (2001). Exercise increases blood flow to locomotor, vestibular, cardiorespiratory and visual regions of the brain in miniature swine. Journal of Physiology, 533, 849–859.
  • Deuster, P. A, Chrousos, G. P., Luger, A, DeBolt, J. E., Bernier, L. L., Trostmann, U. H., … Loriaux, D. L. (1989). Hormonal and metabolic responses of untrained, moderately trained, and highly trained men to three exercise intensities. Metabolism: Clinical and Experimental, 38, 141–148.
  • Dey, S., Singh, R. H., & Dey, P. K. (1992). Exercise training: Significance of regional alterations in serotonin metabolism of rat brain in relation to antidepressant effect of exercise. Physiology & Behavior, 52, 1095–109.
  • Dietrich, A. (2006). Transient hypofrontality as a mechanism for the psychological effects of exercise. Psychiatry Research, 145, 79–83. doi:10.1016/j.psychres.2005.07.033
  • Dietrich, A., & Audiffren, M. (2011). The reticular-activating hypofrontality (RAH) model of acute exercise. Neuroscience and Biobehavioral Reviews, 35, 1305–1325. doi:10.1016/j.neubiorev.2011.02.001
  • Dishman, R. K., Berthoud, H.-R., Booth, F. W., Cotman, C. W., Edgerton, V. R., Fleshner, M. R., … Zigmond, M. J. (2006). Neurobiology of exercise. Obesity (Silver Spring, Md.), 14, 345–356. doi:10.1038/oby.2006.46
  • Doering, T. J., Resch, K. L., Steuernagel, B., Brix, J., Schneider, B., & Fischer, G. C. (1998). Passive and active exercises increase cerebral blood flow velocity in young, healthy individuals. American Journal of Physical Medicine & Rehabilitation/Association of Academic Physiatrists, 77, 490–493.
  • Droste, S. K., Chandramohan, Y., Hill, L. E., Linthorst, A. C. E., & Reul, J. M. H. M. (2007). Voluntary exercise impacts on the rat hypothalamic-pituitary-adrenocortical axis mainly at the adrenal level. Neuroendocrinology, 86, 26–37. doi:10.1159/000104770
  • Duclos, M., & Tabarin, A. (2011). Hormone use and abuse by athletes. Edocrine Updates, 29, 9–16. doi:10.1007/978–1-4419–7014-5
  • Ekkekakis, P. (2009). Illuminating the black box: Investigating prefrontal cortical hemodynamics during exercise with near-infrared spectroscopy. Journal of Sport & Exercise Psychology, 31, 505–553.
  • Fediuc, S., Campbell, J. E., & Riddell, M. C. (2006). Effect of voluntary wheel running on circadian corticosterone release and on HPA axis responsiveness to restraint stress in Sprague-Dawley rats. Journal of Applied Physiology (Bethesda, Md.: 1985), 100, 1867–1875. doi:10.1152/japplphysiol.01416.2005
  • Ferris, L. T., Williams, J. S., & Shen, C.-L. (2007). The effect of acute exercise on serum brain-derived neurotrophic factor levels and cognitive function. Medicine and Science in Sports and Exercise, 39, 728–734. doi:10.1249/mss.0b013e31802f04c7
  • Floyer-Lea, A., Wylezinska, M., Kincses, T., & Matthews, P. M. (2006). Rapid modulation of GABA concentration in human sensorimotor cortex during motor learning. Journal of Neurophysiology, 95, 1639–1644. doi:10.1152/jn.00346.2005
  • Foley, T. E., & Fleshner, M. (2008). Neuroplasticity of dopamine circuits after exercise: Implications for central fatigue. Neuromolecular Medicine, 10, 67–80. doi:10.1007/s12017-008–8032-3
  • Gerin, C., & Privat, A. (1998). Direct evidence for the link between monoaminergic descending pathways and motor activity: II. A study with microdialysis probes implanted in the ventral horn of the spinal cord. Brain Research, 794, 169–173.
  • Girard, I., & Garland, T. (2002). Plasma corticosterone response to acute and chronic voluntary exercise in female house mice. Journal of Applied Physiology (Bethesda, Md.: 1985), 92, 1553–1561. doi:10.1152/japplphysiol.00465.2001
  • Goda, A., Ohgi, S., Kinpara, K., Shigemori, K., Fukuda, K., & Schneider, E. B. (2013). Changes in serum BDNF levels associated with moderate-intensity exercise in healthy young Japanese men. SpringerPlus, 2, 678. doi:10.1186/2193–1801-2–678
  • Goekint, M., Bos, I., Heyman, E., Meeusen, R., Michotte, Y., & Sarre, S. (2012). Acute running stimulates hippocampal dopaminergic neurotransmission in rats, but has no influence on brain-derived neurotrophic factor. Journal of Applied Physiology, 112, 535–541. doi:10.1152/japplphysiol.00306.2011
  • Gold, S. M., Schulz, K.-H., Hartmann, S., Mladek, M., Lang, U. E., Hellweg, R., … Heesen, C. (2003). Basal serum levels and reactivity of nerve growth factor and brain-derived neurotrophic factor to standardized acute exercise in multiple sclerosis and controls. Journal of Neuroimmunology, 138, 99–105.
  • González-Alonso, J., Dalsgaard, M. K., Osada, T., Volianitis, S., Dawson, E. a, Yoshiga, C. C., & Secher, N. H. (2004). Brain and central haemodynamics and oxygenation during maximal exercise in humans. Journal of Physiology, 557, 331–342. doi:10.1113/jphysiol.2004.060574
  • Gustafsson, G., Lira, C. M., Johansson, J., Wisén, A., Wohlfart, B., Ekman, R., & Westrin, A. (2009). The acute response of plasma brain-derived neurotrophic factor as a result of exercise in major depressive disorder. Psychiatry Research, 169, 244–248. doi:10.1016/j.psychres.2008.06.030
  • Hasegawa, H., Takatsu, S., Ishiwata, T., Tanaka, H., Sarre, S., & Meeusen, R. (2011). Continuous monitoring of hypothalamic neurotransmitters and thermoregulatory responses in exercising rats. Journal of Neuroscience Methods, 202, 119–123. doi:10.1016/j.jneumeth.2011.05.024
  • Hattori, S., Naoi, M., & Nishino, H. (1994). Striatal dopamine turnover during treadmill running in the rat: Relation to the speed of running. Brain Research Bulletin, 35, 41–49.
  • Herwig, U., Bräuer, K., Connemann, B., Spitzer, M., & Schönfeldt-Lecuona, C. (2002). Intracortical excitability is modulated by a norepinephrine-reuptake inhibitor as measured with paired-pulse transcranial magnetic stimulation. Psychopharmacology, 164, 228–232. doi:10.1007/s00213-002–1206-z
  • Hill, E. E., Zack, E., Battaglini, C., Viru, M., Viru, A., & Hackney, A. C. (2008). Exercise and circulating cortisol levels: The intensity threshold effect. Journal of Endocrinological Investigation, 31, 587–591.
  • Hiura, M., Nariai, T., Ishii, K., Sakata, M., Oda, K., Toyohara, J., & Ishiwata, K. (2013). Changes in cerebral blood flow during steady-state cycling exercise: A study using oxygen-15-labeled water with PET. Journal of Cerebral Blood Flow and Metabolism, 34, 389–396. doi:10.1038/jcbfm.2013.220
  • Honaga, K., Fujiwara, T., Tsuji, T., Hase, K., Ushiba, J., & Liu, M. (2013). State of intracortical inhibitory interneuron activity in patients with chronic stroke. Clinical Neurophysiology, 124, 364–370. doi:10.1016/j.clinph.2012.08.005
  • Ide, K., Schmalbruch, I. K., Quistorff, B., Horn, a, & Secher, N. H. (2000). Lactate, glucose and O2 uptake in human brain during recovery from maximal exercise. Journal of Physiology, 522, 159–164.
  • Ilic, T. V, Korchounov, A., & Ziemann, U. (2002). Complex modulation of human motor cortex excitability by the specific serotonin re-uptake inhibitor sertraline. Neuroscience Letters, 319, 116–120.
  • Jacobs, B. L., & Fornal, C. A. (1999). Activity of serotonergic neurons in behaving animals. Neuropsychopharmacology, 21, S9–15. doi:10.1016/S0893-133X(99)00012–3
  • Jørgensen, L. G., Perko, G., & Secher, N. H. (1992). Regional cerebral artery mean flow velocity and blood flow during dynamic exercise in humans. Journal of Applied Physiology, 73, 1825–1830.
  • Jovanovic, J. N., Czernik, a J., Fienberg, A. A., Greengard, P., & Sihra, T. S. (2000). Synapsins as mediators of BDNF-enhanced neurotransmitter release. Nature Neuroscience, 3, 323–9. doi:10.1038/73888
  • Kafitz, K. W., Rose, C. R., Thoenen, H., & Konnerth, A. (1999). Neurotrophin-evoked rapid excitation through TrkB receptors. Nature, 401, 918–921. doi:10.1038/44847
  • Kanaley, J. A., Weltman, J. Y., Pieper, K. S., Weltman, A., & Hartman, M. L. (2001). Cortisol and growth hormone responses to exercise at different times of day. Journal of Clinical Endocrinology and Metabolism, 86, 2881–2889.
  • Kashihara, K., & Nakahara, Y. (2005). Short-term effect of physical exercise at lactate threshold on choice reaction time. Perceptual and Motor Skills, 100, 275–291.
  • Kemppainen, J., Aalto, S., Fujimoto, T., Kalliokoski, K. K., Långsjö, J., Oikonen, V., … Knuuti, J. (2005). High intensity exercise decreases global brain glucose uptake in humans. Journal of Physiology, 568, 323–332. doi:10.1113/jphysiol.2005.091355
  • Kety, S. S., & Schmidt, C. F. (1948). The effects of altered arterial tensions of carbon dioxide and oxygen on cerebral blood flow and cerebral oxygen consumption of normal young men. Journal of Clinical Investigation, 27, 484–492. doi:10.1172/JCI101995
  • Kiive, E., Maaroos, J., Shlik, J., Tõru, I., & Harro, J. (2004). Growth hormone, cortisol and prolactin responses to physical exercise: Higher prolactin response in depressed patients. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 28, 1007–1013. doi:10.1016/j.pnpbp.2004.05.035
  • Kirschner, J., Moll, G. H., Fietzek, U. M., Heinrich, H., Mall, V., Berweck, S., … Rothenberger, A. (2003). Methylphenidate enhances both intracortical inhibition and facilitation in healthy adults. Pharmacopsychiatry, 36, 79–82. doi:10.1055/s-2003–39049
  • Kleim, J. A., Chan, S., Pringle, E., Schallert, K., Procaccio, V., Jimenez, R., & Cramer, S. C. (2006). BDNF val66met polymorphism is associated with modified experience-dependent plasticity in human motor cortex. Nature Neuroscience, 9, 735–737. doi:10.1038/nn1699
  • Knaepen, K., Goekint, M., Heyman, E. M., & Meeusen, R. (2010). Neuroplasticity - exercise-induced response of peripheral brain-derived neurotrophic factor: A systematic review of experimental studies in human subjects. Sports Medicine, 40, 765–801. doi:10.2165/11534530-000000000-00000
  • Korchounov, A., & Ziemann, U. (2011). Neuromodulatory neurotransmitters influence LTP-like plasticity in human cortex: A pharmaco-TMS study. Neuropsychopharmacology, 36, 1894–1902. doi:10.1038/npp.2011.75
  • Kubitz, K., & Pothakos, K. (1997). Does aerobic exercise decrease brain activation? Journal of Sport & Exercise Psychology, 19, 291–301.
  • Kuo, M.-F., Paulus, W., & Nitsche, M. A. (2008). Boosting focally-induced brain plasticity by dopamine. Cerebral Cortex, 18, 648–651. doi:10.1093/cercor/bhm098
  • Kurosawa, M., Okada, K., Sato, A., & Uchida, S. (1993). Extracellular release of acetylcholine, noradrenaline and serotonin increases in the cerebral cortex during walking in conscious rats. Neuroscience Letters, 161, 73–76.
  • Lan, M. J., Ogden, R. T., Huang, Y., Oquendo, M. a, Sullivan, G. M., Miller, J., … Parsey, R. V. (2014). Genetic variation in brain-derived neurotrophic factor val66met allele is associated with altered serotonin-1A receptor binding in human brain. NeuroImage, 94, 33–39. doi:10.1016/j.neuroimage.2014.02.027
  • Lancel, M., Droste, S. K., Sommer, S., & Reul, J. M. H. M. (2003). Influence of regular voluntary exercise on spontaneous and social stress-affected sleep in mice. The European Journal of Neuroscience, 17, 2171–2179.
  • Lang, N., Speck, S., Harms, J., Rothkegel, H., Paulus, W., & Sommer, M. (2008). Dopaminergic Potentiation of rTMS-Induced Motor Cortex Inhibition. Biological Psychiatry, 63, 231–233.
  • Laske, C., Banschbach, S., Stransky, E., Bosch, S., Straten, G., Machann, J., … Eschweiler, G. W. (2010). Exercise-induced normalization of decreased BDNF serum concentration in elderly women with remitted major depression. International Journal of Neuropsychopharmacology, 13, 595–602. doi:10.1017/S1461145709991234
  • Lazar, R. M. (2002). Reemergence of stroke deficits with midazolam challenge. Stroke, 33, 283–285. doi:10.1161/hs0102.101222
  • Lessmann, V., & Brigadski, T. (2009). Mechanisms, locations, and kinetics of synaptic BDNF secretion: An update. Neuroscience Research, 65, 11–22. doi:10.1016/j.neures.2009.06.004
  • Levine, E. S., Dreyfus, C. F., Black, I. B., & Plummer, M. R. (1995). Brain-derived neurotrophic factor rapidly enhances synaptic transmission in hippocampal neurons via postsynaptic tyrosine kinase receptors. Proceedings of the National Academy of Sciences of the United States of America, 92, 8074–8077.
  • Lin, P.-Y., Chen, J.-J. J., & Lin, S.-I. (2013). The cortical control of cycling exercise in stroke patients: An fNIRS study. Human Brain Mapping, 34, 2381–2390. doi:10.1002/hbm.22072
  • Lommatzsch, M., Zingler, D., Schuhbaeck, K., Schloetcke, K., Zingler, C., Schuff-Werner, P., & Virchow, J. C. (2005). The impact of age, weight and gender on BDNF levels in human platelets and plasma. Neurobiology of Aging, 26, 115–123. doi:10.1016/j.neurobiolaging.2004.03.002
  • Luft, A. R., & Schwarz, S. (2009). Dopaminergic signals in primary motor cortex. International Journal of Developmental Neuroscience, 27, 415–421. doi:10.1016/j.ijdevneu.2009.05.004
  • Lukaszyk, A., Buczko, W., & Wiśniewski, K. (1983). The effect of strenuous exercise on the reactivity of the central dopaminergic system in the rat. Polish Journal of Pharmacology and Pharmacy, 35, 29–36.
  • Macintosh, B. J., Crane, D. E., Sage, M. D., Rajab, A. S., Donahue, M. J., McIlroy, W. E., & Middleton, L. E. (2014). Impact of a single bout of aerobic exercise on regional brain perfusion and activation responses in healthy young adults. PloS One, 9, e85163. doi:10.1371/journal.pone.0085163
  • McDonnell, M. N., Buckley, J. D., Opie, G. M., Ridding, M. C., & Semmler, J. G. (2013). A single bout of aerobic exercise promotes motor cortical neuroplasticity. Journal of Applied Physiology, 114, 1174–1182. doi:10.1152/japplphysiol.01378.2012
  • McGuigan, M. R., Egan, A. D., & Foster, C. (2004). Salivary cortisol responses and perceived exertion during high intensity and low intensity bouts of resistance exercise. Journal of Sports Science & Medicine, 3, 8–15.
  • McHughen, S. A., Rodriguez, P. F., Kleim, J., Kleim, E. D., Marchal Crespo, L., Procaccio, V., & Cramer, S. C. (2010). BDNF val66met polymorphism influences motor system function in the human brain. Cerebral Cortex, 20, 1254–1262.
  • McMorris, T. (2009). Exercise and cognitive function: A neuroendocrinological explanation. New York, NY: Routledge.
  • McMorris, T., Collard, K., Corbett, J., Dicks, M., & Swain, J. P. (2008). A test of the catecholamines hypothesis for an acute exercise-cognition interaction. Pharmacology, Biochemistry, and Behavior, 89, 106–115. doi:10.1016/j.pbb.2007.11.007
  • McMorris, T., Davranche, K., Jones, G., Hall, B., Corbett, J., & Minter, C. (2009). Acute incremental exercise, performance of a central executive task, and sympathoadrenal system and hypothalamic-pituitary-adrenal axis activity. International Journal of Psychophysiology, 73, 334–340. doi:10.1016/j.ijpsycho.2009.05.004
  • McMorris, T., Myers, S., MacGillivary, W. W., Sexsmith, J. R., Fallowfield, J., Graydon, J., & Forster, D. (1999). Exercise, plasma catecholamine concentrations and decision-making performance of soccer players on a soccer-specific test. Journal of Sports Sciences, 17, 667–676. doi:10.1080/026404199365687
  • Meeusen, R., Smolders, I., Sarre, S., de Meirleir, K., Keizer, H., Serneels, M., … Michotte, Y. (1997). Endurance training effects on neurotransmitter release in rat striatum: An in vivo microdialysis study. Acta Physiologica Scandinavica, 159, 335–341.
  • Meeusen, R., Watson, P., Hasegawa, H., Roelands, B., & Piacentini, M. F. (2006). The serotonin hypothesis and beyond. Sports Medicine, 36, 881–909.
  • Milani, P., Piu, P., Popa, T., della Volpe, R., Bonifazi, M., Rossi, A., & Mazzocchio, R. (2010). Cortisol-induced effects on human cortical excitability. Brain Stimulation, 3, 131–139. doi:10.1016/j.brs.2009.07.004
  • Monte-Silva, K., Liebetanz, D., Grundey, J., Paulus, W., & Nitsche, M. A. (2010). Dosage-dependent non-linear effect of L-dopa on human motor cortex plasticity. Journal of Physiology, 588, 3415–3424. doi:10.1113/jphysiol.2010.190181
  • Moraine, J. J., Lamotte, M., Berre, J., Niset, G., Leduc, A., & Naeije, R. (1993). Relationship of middle cerebral artery blood flow velocity to intensity during dynamic exercise in normal subjects. European Journal of Applied Physiology, 67, 35–38.
  • Nitsche, M. a, Kuo, M.-F., Karrasch, R., Wächter, B., Liebetanz, D., & Paulus, W. (2009). Serotonin affects transcranial direct current-induced neuroplasticity in humans. Biological Psychiatry, 66, 503–508. doi:10.1016/j.biopsych.2009.03.022
  • Nybo, L., Møller, K., Volianitis, S., Nielsen, B., & Secher, N. H. (2002). Effects of hyperthermia on cerebral blood flow and metabolism during prolonged exercise in humans. Journal of Applied Physiology, 93, 58–64. doi:10.1152/japplphysiol.00049.2002
  • Nybo, L., & Nielsen, B. (2001). Middle cerebral artery blood velocity is reduced with hyperthermia during prolonged exercise in humans. Journal of Physiology, 534, 279–286.
  • Ogoh, S., & Ainslie, P. N. (2009). Cerebral blood flow during exercise : Mechanisms of regulation. Journal of Applied Physiology, 107, 1370–1380. doi:10.1152/japplphysiol.00573.2009.
  • Okutsu, M., Suzuki, K., Ishijima, T., Peake, J., & Higuchi, M. (2008). The effects of acute exercise-induced cortisol on CCR2 expression on human monocytes. Brain, Behavior, and Immunity, 22, 1066–1071. doi:10.1016/j.bbi.2008.03.006
  • Pagliari, R., & Peyrin, L. (1995). Norepinephrine release in the rat frontal cortex under treadmill exercise: a study with microdialysis. Journal of Applied Physiology, 78, 2121–2130.
  • Parr-Brownlie, L. C., & Hyland, B. I. (2005). Bradykinesia induced by dopamine D2 receptor blockade is associated with reduced motor cortex activity in the rat. Journal of Neuroscience , 25, 5700–5709. doi:10.1523/JNEUROSCI.0523–05.2005
  • Pattwell, S. S., Bath, K. G., Perez-Castro, R., Lee, F. S., Chao, M. V, & Ninan, I. (2012). The BDNF Val66Met polymorphism impairs synaptic transmission and plasticity in the infralimbic medial prefrontal cortex. Journal of Neuroscience, 32, 2410–2421. doi:10.1523/JNEUROSCI.5205-11.2012
  • Paulus, W., Classen, J., Cohen, L. G., Large, C. H., Di Lazzaro, V., Nitsche, M., … Ziemann, U. (2008). State of the art: Pharmacologic effects on cortical excitability measures tested by transcranial magnetic stimulation. Brain Stimulation, 1, 151–163. doi:10.1016/j.brs.2008.06.002
  • Petersen, T. H., Willerslev-Olsen, M., Conway, B. A., & Nielsen, J. B. (2012). The motor cortex drives the muscles during walking in human subjects. Journal of Physiology, 590, 2443–2452. doi:10.1113/jphysiol.2012.227397
  • Pittenger, C., & Duman, R. S. (2008). Stress, depression, and neuroplasticity: A convergence of mechanisms. Neuropsychopharmacology, 33, 88–109. doi:10.1038/sj.npp.1301574
  • Plewnia, C., Hoppe, J., Hiemke, C., Bartels, M., Cohen, L. G., & Gerloff, C. (2002). Enhancement of human cortico-motoneuronal excitability by the selective norepinephrine reuptake inhibitor reboxetine. Neuroscience Letters, 330, 231–234. doi:10.1016/S0304-3940(02)00803-0
  • Pontifex, M. B., Hillman, C. H., Fernhall, B., Thompson, K. M., & Valentini, T. A. (2009). The effect of acute aerobic and resistance exercise on working memory. Medicine and Science in Sports and Exercise, 41, 927–934. doi:10.1249/MSS.0b013e3181907d69
  • Pott, F., Jensen, K., Hansen, H., Christensen, N. J., Lassen, N. A., & Secher, N. H. (1996). Middle cerebral artery blood velocity and plasma catecholamines during exercise. Acta Physiologica Scandinavica, 158, 349–356. doi:10.1046/j.1365-201X.1996.564325000.x
  • Rahman, Z. A., Abdullah, N., Singh, R., & Sosroseno, W. (2010). Effect of acute exercise on the levels of salivary cortisol, tumor necrosis factor-alpha and nitric oxide. Journal of Oral Science, 52, 133–136.
  • Raichlen, D. A., & Polk, J. D. (2013). Linking brains and brawn: Exercise and the evolution of human neurobiology. Proceedings. Biological Sciences, 280, 20122250. doi:10.1098/rspb.2012.2250
  • Rasmussen, P., Brassard, P., Adser, H., Pedersen, M. V, Leick, L., Hart, E., … Pilegaard, H. (2009). Evidence for a release of brain-derived neurotrophic factor from the brain during exercise. Experimental Physiology, 94, 1062–1069. doi:10.1113/expphysiol.2009.048512
  • Rasmussen, P., Nielsen, J., Overgaard, M., Krogh-Madsen, R., Gjedde, A., Secher, N. H., & Petersen, N. C. (2010). Reduced muscle activation during exercise related to brain oxygenation and metabolism in humans. Journal of Physiology, 588, 1985–1995. doi:10.1113/jphysiol.2009.186767
  • Roig, M., Skriver, K., Lundbye-Jensen, J., Kiens, B., & Nielsen, J. B. (2012). A single bout of exercise improves motor memory. PloS One, 7, e44594. doi:10.1371/journal.pone.0044594
  • Rojas Vega, S., Strüder, H. K., Wahrmann, B. V., Schmidt, A., Bloch, W., & Hollmann, W. (2006). Acute BDNF and cortisol response to low intensity exercise and following ramp incremental exercise to exhaustion in humans. Brain Research, 21, 59–65. doi:10.1016/j.brainres.2006.08.105
  • Rupp, T., Thomas, R., Perrey, S., & Stephane, P. (2008). Prefrontal cortex oxygenation and neuromuscular responses to exhaustive exercise. European Journal of Applied Physiology, 102, 153–163. doi:10.1007/s00421-007-0568-7
  • Sale, M. V, Ridding, M. C., & Nordstrom, M. (2008). Cortisol inhibits neuroplasticity induction in human motor cortex. Journal of Neuroscience, 28, 8285–8293. doi:10.1523/JNEUROSCI.1963-08.2008
  • Schiffer, T., Schulte, S., Sperlich, B., Achtzehn, S., Fricke, H., & Strüder, H. K. (2011). Lactate infusion at rest increases BDNF blood concentration in humans. Neuroscience Letters, 488, 234–237. doi:10.1016/j.neulet.2010.11.035
  • Schmolesky, M. T., Webb, D. L., & Hansen, R. A. (2013). The effects of aerobic exercise intensity and duration on levels of brain-derived neurotrophic factor in healthy men. Journal of Sports Science & Medicine, 12, 502–511.
  • Schurr, A., West, C. A., & Rigor, B. M. (1988). Lactate-supported synaptic function in the rat hippocampal slice preparation. Science, 240(4857), 1326–1328. doi:10.1126/science.3375817
  • Seamans, J. K., & Yang, C. R. (2004). The principal features and mechanisms of dopamine modulation in the prefrontal cortex. Progress in Neurobiology, 74, 1–58. doi:10.1016/j.pneurobio.2004.05.006
  • Secher, N. H., Seifert, T., & Van Lieshout, J. J. (2008). Cerebral blood flow and metabolism during exercise: Implications for fatigue. Journal of Applied Physiology, 104, 306–314. doi:10.1152/japplphysiol.00853.2007.
  • Sidhu, S. K., Lauber, B., Cresswell, A. G., & Carroll, T. J. (2013). Sustained cycling exercise increases intracortical inhibition. Medicine and Science in Sports and Exercise, 45, 654–62. doi:10.1249/MSS.0b013e31827b119c
  • Singh, A. M., Duncan, R. E., Neva, J. L., & Staines, W. R. (2014). Aerobic exercise modulates intracortical inhibition and facilitation in a nonexercised upper limb muscle. BMC Sports Science, Medicine and Rehabilitation, 6, 23.
  • Singh, A. M., Neva, J. L., & Staines, W. R. (2014). Acute exercise enhances the response to paired associative stimulation-induced plasticity in the primary motor cortex. Experimental Brain Research, 232, 3675–3685.
  • Smith, A. E., Goldsworthy, M. R., Garside, T., Wood, F. M., & Ridding, M. C. (2014). The influence of a single bout of aerobic exercise on short-interval intracortical excitability. Experimental Brain Research, 232, 1875–1882. doi:10.1007/s00221-014-3879-z
  • Smith, J. C., Paulson, E. S., Cook, D. B., Verber, M. D., & Tian, Q. (2010). Detecting changes in human cerebral blood flow after acute exercise using arterial spin labeling: Implications for fMRI. Journal of Neuroscience Methods, 191, 258–262. doi:10.1016/j.jneumeth.2010.06.028
  • Stagg, C. J., Bachtiar, V., & Johansen-Berg, H. (2011). The role of GABA in human motor learning. Current Biology, 21, 480–484. doi:10.1016/j.cub.2011.01.069
  • Stranahan, A. M., Lee, K., & Mattson, M. P. (2010). Central Mechanisms of HPA axis Regulation by Voluntary Exercise. Neuromolecular Medicine, 10, 118–127. doi:10.1007/s12017-008–8027-0.Central
  • Ströhle, A., Stoy, M., Graetz, B., Scheel, M., Wittmann, A., Gallinat, J., … Hellweg, R. (2010). Acute exercise ameliorates reduced brain-derived neurotrophic factor in patients with panic disorder. Psychoneuroendocrinology, 35, 364–368. doi:10.1016/j.psyneuen.2009.07.013
  • Strüder, H. K., & Weicker, H. (2001). Physiology and pathophysiology of the serotonergic system and its implications on mental and physical performance. Part II. International Journal of Sports Medicine, 22, 482–497. doi:10.1055/s-2001-17606
  • Subudhi, A. W., Miramon, B. R., Granger, M. E., & Roach, R. C. (2009). Frontal and motor cortex oxygenation during maximal exercise in normoxia and hypoxia. Journal of Applied Physiology, 106, 1153–1158. doi:10.1152/japplphysiol.91475.2008.
  • Takahashi, K., Maruyama, A., Hirakoba, K., Maeda, M., Etoh, S., Kawahira, K., & Rothwell, J. C. (2011). Fatiguing intermittent lower limb exercise influences corticospinal and corticocortical excitability in the nonexercised upper limb. Brain Stimulation, 4, 90–96.
  • Takeuchi, N., Tada, T., Toshima, M., & Ikoma, K. (2010). Correlation of motor function with transcallosal and intracortical inhibition after stroke. Journal of Rehabilitation Medicine, 42, 962–966. doi:10.2340/16501977-0628
  • Tang, S. W., Chu, E., Hui, T., Helmeste, D., & Law, C. (2008). Influence of exercise on serum brain-derived neurotrophic factor concentrations in healthy human subjects. Neuroscience Letters, 431, 62–65.
  • Vissing, J., Andersen, M., & Diemer, N. H. (1996). Exercise-induced changes in local cerebral glucose utilization in the rat. Journal of Cerebral Blood Flow and Metabolism, 16, 729–736. doi:10.1097/00004647-199607000-00025
  • Wang, G. J., Volkow, N. D., Fowler, J. S., Franceschi, D., Logan, J., Pappas, N. R., … Netusil, N. (2000). PET studies of the effects of aerobic exercise on human striatal dopamine release. Journal of Nuclear Medicine, 41, 1352–1356.
  • Winter, B., Breitenstein, C., Mooren, F. C., Voelker, K., Fobker, M., Lechtermann, A., … Knecht, S. (2007). High impact running improves learning. Neurobiology of Learning and Memory, 87, 597–609. doi:10.1016/j.nlm.2006.11.003
  • Yamaguchi, T., Fujiwara, T., Liu, W., & Liu, M. (2012). Effects of pedaling exercise on the intracortical inhibition of cortical leg area. Experimental Brain Research, 218, 401–406. doi:10.1007/s00221-012-3026-7
  • Yang, J., Ruchti, E., Petit, J.-M., Jourdain, P., Grenningloh, G., Allaman, I., & Magistretti, P. J. (2014). Lactate promotes plasticity gene expression by potentiating NMDA signaling in neurons. Proceedings of the National Academy of Sciences, 111, 12228–12233. doi:10.1073/pnas.1322912111
  • Ziemann, U., Lönnecker, S., Steinhoff, B. J., & Paulus, W. (1996). Effects of antiepileptic drugs on motor cortex excitability in humans: A transcranial magnetic stimulation study. Ann Neurol, 40, 367–378. doi:10.1002/ana.410400306
  • Ziemann, U., Tergau, F., Bruns, D., Baudewig, J., & Paulus, W. (1997). Changes in human motor cortex excitability induced by dopaminergic and anti-dopaminergic drugs. Electroencephalography and Clinical Neurophysiology, 105, 430–437.
  • Zoladz, J. A., & Pilc, A. (2010). The effect of the brain-derived neurotrophic factor: From animal to human studies. Journal of Physiology and Pharmacology, 61, 533–541.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.