237
Views
14
CrossRef citations to date
0
Altmetric
RESEARCH ARTICLES

Online Vision as a Function of Real-Time Limb Velocity: Another Case for Optimal Windows

, , , &
Pages 465-475 | Received 16 Jul 2014, Accepted 23 Jan 2015, Published online: 18 Mar 2015

REFERENCES

  • Ashe, J., & Georgopoulos, A. P. (1994). Movement parameters and neural activity in motor cortex and area 5. Cerebral Cortex, 6, 590–600.
  • Bard, C., Hay, L., & Fleury, M. (1985). Role of peripheral vision in the directional control of rapid aiming movements. Canadian Journal of Psychology, 39, 151–161.
  • Bard, C., Paillard, J., Fleury, M., Hay, L., & Larue, J. (1990). Positional versus directional control loops in visuomotor pointing. Cahiers de Psychologie Cognitive, 10, 145–156.
  • Beggs, W. D. A., & Howarth, C. I. (1972). Movement of hand towards a target. The Quarterly Journal of Experimental Psychology, 24, 448–453. doi:10.1080/14640747208400304
  • Bootsma, R. J., & van Wieringen, P. C. W. (1990). Timing an attacking forehand drive in table tennis. Journal of Experimental Psychology: Human Perception and Performance, 16, 21–29.
  • Carlton, L. G. (1981). Processing visual feedback information for movement control. Journal of Experimental Psychology: Human Perception and Performance, 7, 1019–1030.
  • Cheng, D. T., Luis, M., & Tremblay, L. (2008). Randomizing visual feedback in manual aiming: Reminiscence of the previous trial condition and prior knowledge of feedback availability. Experimental Brain Research, 189, 403–410. doi:10.1007/s00221-008-1436-3
  • Cheng, D. T., Manson, G. A., Kennedy, A., & Tremblay, L. (2013). Facilitating the use of online visual feedback: Advance information and the inter-trial interval. Motor Control, 17, 111–122.
  • Chua, R., & Elliott, D. (1993). Visual regulation of manual aiming. Human Movement Science, 12, 365–401.
  • Churchland, M. M., Santhanam, G., & Shenoy, K. V. (2006). Preparatory activity in premotor and motor cortex reflects the speed of the upcoming reach. Journal of Neurophysiology, 96, 3130–3146. doi: 10.1152/jn.00307.2006
  • Cisek, P. (2006). Preparing for speed. Focus on “Preparatory activity in the premotor and motor cortex reflects the speed of the upcoming reach”. Journal of Neurophysiology, 96, 2842–2843. doi: 10.1152/jn.00857.2006
  • Conti, P., & Beaubaton, D. (1976). Utilisation des informations visuelles dans le contrôle du movement: Étude de la précision des pointages chez l'homme [The use of visual information for movement control: Studying pointing precision in humans]. Le Travail Humain, 39, 19–32.
  • Dubrowski, A., Lam, J., & Carnahan, H. (2000). Target velocity effects on manual interception kinematics. Acta psychologica, 104, 103–118.
  • Elliott, D. (1988). The influence of visual target and limb information on manual aiming. Canadian Journal of Experimental Psychology, 42, 57–67.
  • Elliott, D., & Allard, F. (1985). The utilization of visual feedback information during rapid pointing movements. The Quarterly Journal of Experimental Psychology A: Human Experimental Psychology, 37, 407–425.
  • Elliott, D., Carson, R. G., Goodman, D., & Chua, R. (1991). Discrete vs. continuous visual control of manual aiming. Human Movement Science, 10, 393–418.
  • Elliott, D., Hansen, S., Grierson, L. E. M., Lyons, J., Bennett, S. J., & Hayes, S. J. (2010). Goal-directed aiming: Two components but multiple processes. Psychological Bulletin, 136, 1023–1044. doi:10.1037/a0020958
  • Elliott, D., Hansen, S., Mendoza, J., & Tremblay, L. (2004). Learning to optimize speed, accuracy, and energy expenditure: A framework for understanding speed-accuracy relations. Journal of Motor Behavior, 36, 339–351.
  • Elliott, D., Helsen, W. F., & Chua, R. (2001). A century later: Woodworth's (1899) two-component model of goal-directed aiming. Psychological Bulletin, 127, 342–357.
  • Elliott, D., & Jaeger, M. (1988). Practice and the visual control of manual aiming movements. Journal of Human Movement Studies, 14, 279–291.
  • Ghez, C., Gordon, J., Ghilardi, M. F., & Sainburg, R., (1995). Contributions of vision and proprioception to accuracy in limb movements. In M. S. Gazzaniga (Ed.), The cognitive neurosciences (pp. 549–564). Cambridge, MA: MIT Press.
  • Grierson, L. E., & Elliott, D. (2009). Goal-directed aiming and the relative contribution of two online control processes. American Journal of Psychology, 122, 309–324.
  • Grierson, L. E., Gonzalez, C., & Elliott, D. (2009). Kinematic analysis of early online control of goal-directed reaches: a novel movement perturbation study. Motor Control, 13, 280–296.
  • Handlovsky, I., Hansen, S., Lee, T. D., & Elliott, D. (2004). The Ebbinghaus illusion affects online movement control. Neuroscience Letters, 366, 308–311.
  • Hansen, S. (2010). Determining the temporal limits of a visual sample for visual regulation. Journal of Motor Behavior, 42, 107–110.
  • Hansen, S., Glazebrook, C., Anson, J. G., Weeks, D. J., & Elliott, D. (2006). The influence of advance information about target location and visual feedback on movement planning and execution. Canadian Journal of Experimental Psychology, 60, 200–208.
  • Hansen, S., Tremblay, L., & Elliott, D. (2008). Real-time manipulation of visual displacement during manual aiming. Human Movement Science, 27, 1–11. doi:10.1016/j.humov.2007.09.001
  • Heath, M. (2005). Role of limb and target vision in the online control of memory-guided reaches. Motor Control, 9, 281–311.
  • Heath, M., Westwood, D. A., & Binsted, G. (2004). The control of memory-guided reaching movements in peripersonal space. Motor Control, 8, 76–106.
  • Howard, I. S., Ingram, J. N., Franklin, D. W., & Wolpert, D. M. (2012). Gone in 0.6 seconds: the encoding of motor memories depends on recent sensorimotor states. The Journal of Neuroscience, 32, 12756–12768. doi:10.1523/JNEUROSCI.5909-11.2012
  • Keele, S. W., & Posner, M. I. (1968). Processing of visual feedback in rapid movements. Journal of Experimental Psychology, 77, 155–158.
  • Luis, M., & Tremblay, L. (2008). Visual feedback use during a back tuck somersault: Evidence for optimal visual feedback utilization. Motor Control, 12, 210–218.
  • Mason, A. H., & Carnahan, H. (1999). Target viewing time and velocity effects on prehension. Experimental Brain Research, 127, 83–94.
  • Merchant, H., Battaglia-Meyer, A., & Georgopoulos, A. P. (2004). Neural responses during interception of real and apparent circularly moving stimuli in motor cortex and Area 7a. Cerebral Cortex, 14, 314–331.
  • Meyer, D. E., Abrams, R. A., Kornblum, S., Wright, C. E., & Smith, J. E. (1988). Optimality in human motor performance: Ideal control of rapid aimed movements. Psychological Review, 95, 340–370. doi:10.1037/0033-295X.95.3.340
  • Milgram, P. (1987). A spectacle-mounted liquid-crystal tachistoscope. Behavior Research Methods, Instruments, & Computers, 19, 449–456.
  • Paillard, J., Jordan, P., & Brouchon, M. (1981). Visual motion cues in prismatic adaptation: evidence of two separate and additive processes. Acta Psychologica, 48, 253–270.
  • Proteau, L., Marteniuk, R. G., Girouard, Y., & Dugas, C. (1987). On the type of information used to control and learn an aiming movement after moderate and extensive training. Human Movement Science, 6, 181–199.
  • Proteau, L., & Masson, G. (1997). Visual perception modifies goal-directed movement control: supporting evidence from a visual perturbation paradigm. The Quarterly Journal of Experimental Psychology Section A: Human Experimental Psychology, 50, 726–741.
  • Proteau, L., Roujoula, A., & Messier, J. (2009). Evidence for continuous processing of visual information in a manual video-aiming task. Journal of Motor Behavior, 41, 219–231. doi:10.3200/JMBR.41.3.219-231
  • Redding, G. M., & Wallace, B. (2001). Calibration and alignment are separable: evidence from prism adaptation. Journal of Motor Behavior, 33, 401–412.
  • Saunders, J. A., & Knill, D. C. (2005). Humans use continuous visual feedback from the hand to control the direction and distance of pointing movements. Experimental Brain Research, 162, 458–473.
  • Smith, W. M., & Bowen, K. F. (1980). The effects of delayed and displaced visual feedback on motor control. Journal of Motor Behavior, 12, 91–101.
  • Smyrnis, N., Evdokimidis, I., Constantinidis, T. S., & Kastrinakis, G. (2000). Speed-accuracy trade-off in the performance of pointing movements in different directions in two-dimensional space. Experimental Brain Research, 134, 21–31.
  • Tremblay, L., Hansen, S., Kennedy, A. D., & Cheng, D. T. (2013). The utility of vision during action: Multiple visual-motor processes? Journal of Motor Behavior, 45, 91–99.
  • Todorov, E. (2004). Optimality principles in sensorimotor control. Nature Neuroscience, 7, 907–915.
  • Trommershäuser, J., Gepshtein, S., Maloney, L. T., Landy, M. S., & Banks, M. S. (2005). Optimal compensation for changes in task-relevant movement variability. The Journal of Neuroscience, 25, 7169–7178.
  • Van Donkelaar, P. (1999). Pointing movements are affected by size-contrast illusions. Experimental Brain Research, 125, 517–520.
  • Whitney, D., Westwood, D. A., & Goodale, M. A., (2003). The influence of visual motion on fast reaching movements to a stationary object. Nature, 423, 869–873.
  • Woodworth, R. S. (1899). Accuracy of voluntary movement. Psychological Review: Monograph Supplements, 3, i–114.
  • Zelaznik, H. Z., Hawkins, B., & Kisselburgh, L. (1983). Rapid visual feedback processing in single-aiming movements. Journal of Motor Behavior, 3, 217–236.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.