1,080
Views
39
CrossRef citations to date
0
Altmetric
RESEARCH ARTICLE

Engaging Environments Enhance Motor Skill Learning in a Computer Gaming Task

, &
Pages 172-182 | Received 06 Feb 2015, Accepted 28 Jun 2015, Published online: 21 Aug 2015

REFERENCES

  • Abe, M., Schambra, H., Wassermann, E. M., Luckenbaugh, D. A., Schweighofer, N., & Cohen, L. G. (2011). Reward improves long-term retention of a motor memory through induction of offline memory gains. Current Biology, 21, 557–562.
  • Adcock, R. A., Thangavel, A., Whitfield-Gabrieli, S., Knutson, B., & Gabrieli, J. D. E. (2006). Reward-motivated learning: Mesolimbic activation precedes memory formation. Neuron, 50, 507–517. doi:10.1016/j.neuron.2006.03.036
  • Anderson, B. J., Li, X., Alcantara, A. A., Isaacs, K. R., Black, J. E., & Greenough, W. T. (1994). Glial hypertrophy is associated with synaptogenesis following motor-skill learning, but not with angiogenesis following exercise. Glia, 11, 73–80. doi:10.1002/glia.440110110
  • Birkenmeier, R. L., Prager, E. M., & Lang, C. E. (2010). Translating animal doses of task-specific training to people with chronic stroke in 1-hour therapy sessions: A proof-of-concept study. Neurorehabilitation and Neural Repair, 24, 620–635. doi:10.1177/1545968310361957
  • Boyd, L. A., Vidoni, E. D., & Siengsukon, C. F. (2008). Multidimensional motor sequence learning is impaired in older but not younger or middle-aged adults. Physical Therapy, 88, 351–362. doi:10.2522/ptj.20070131
  • Boyd, L. A., & Winstein, C. J. (2001). Implicit motor-sequence learning in humans following unilateral stroke: The impact of practice and explicit knowledge. Neuroscience Letters, 298, 65–69. doi:10.1016/S0304-3940(00)01734-1
  • Curran, T., & Keele, S. (1993). Attentional and nonattentional forms of sequence learning. Journal of Experimental Psychology: Learning, Memory and Cognition, 19, 189–202.
  • Faul, F., Erdfelder, E., Buchner, A., & Lang, A.-G. (2009). Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behavior Research Methods, 41, 1149–1160. doi:10.3758/BRM.41.4.1149
  • Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39, 175–191.
  • Gong, M., & Li, S. (2012). Reward prompts visual short-term memory consolidation. Journal of Vision, 12, 171.
  • Gruber, M. J., Gelman, B. D., & Ranganath, C. (2014). States of curiosity modulate hippocampus-dependent learning via the dopaminergic circuit. Neuron, 84, 486–496. doi:10.1016/j.neuron.2014.08.060
  • Guadagnoli, M. A, & Lee, T. D. (2004). Challenge point: A framework for conceptualizing the effects of various practice conditions in motor learning. Journal of Motor Behavior, 36, 212–224. doi:10.3200/JMBR.36.2.212-224
  • Hitchcott, P., & Phillips, G. (1998). Double dissociation of the behavioural effects of R (+) 7–OH–DPAT infusions in the central and basolateral amygdala nuclei upon Pavlovian and instrumental. Psychopharmacology, 140, 458–469.
  • Hunicke, R., Leblanc, M., & Zubek, R. (2004). MDA: A formal approach to game design and game research. Challenges in Game Artificial Intelligence: Papers from the 2004 AAAI Workshop, 1–5. Retrieved from http://www.cs.northwestern.edu/˜hunicke/MDA.pdf
  • Kang, M. J., Hsu, M., Krajbich, I. M., Loewenstein, G., McClure, S. M., Wang, J. T., & Camerer, C. F. (2009). The wick in the candle of learning: Epistemic curiosity activates reward circuitry and enhances memory. Psychological Science, 20, 963–973. doi:10.1111/j.1467-9280.2009.02402.x
  • Kantak, S. S., & Winstein, C. J. (2012). Learning – performance distinction and memory processes for motor skills: A focused review and perspective. Behavioural Brain Research, 228, 219–231. doi:10.1016/j.bbr.2011.11.028
  • Kempermann, G., Kuhn, H. G., & Gage, F. H. (1997). More hippocampal neurons in adult mice living in an enriched environment. Nature, 368, 493–495.
  • Kleim, J. A., Barbay, S., & Nudo, R. J. (1998). Functional reorganization of the rat motor cortex following motor skill learning. Journal of Neurophysiology, 80, 3321–3325.
  • Klintsova, A. Y., Dickson, E., Yoshida, R., & Greenough, W. T. (2004). Altered expression of BDNF and its high-affinity receptor TrkB in response to complex motor learning and moderate exercise. Brain Research, 1028, 92–104. doi:10.1016/j.brainres.2004.09.003
  • Krakauer, J. W., & Shadmehr, R. (2006). Consolidation of motor memory. Trends in Neurosciences, 29, 58–64. doi:10.1016/j.tins.2005.10.003
  • Lewthwaite, R., & Wulf, G. (2010). Grand challenge for movement science and sport psychology: Embracing the social-cognitive-affective-motor nature of motor behavior. Frontiers in Psychology, 1, 42. doi:10.3389/fpsyg.2010.00042
  • Lohse, K. R., Hilderman, C. G. E., Cheung, K. L., Tatla, S., & Van der Loos, H. F. M. (2014). Virtual reality therapy for adults post-stroke: From motivation to action: functional interface 810 between the limbc and motor system. systematic review and meta-analysis exploring virtual environments and commercial games in therapy. PloS One, 9(3), e93318. doi:10.1371/journal.pone.0093318
  • Lohse, K. R., Shirzad, N., Verster, A., Hodges, N. J., & Van der Loos, H. F. M. (2013). Videogames and rehabilitation: Using design principles to enhance patient engagement. Journal of Neurologic Physical Therapy, 37, 166–175. doi:10.1097/NPT.0000000000000017
  • McAuley, E., Duncan, T., & Tammen, V. (1989). Psychometric properties of the Intrinsic Motivation Inventory in a competitive sport setting: A confirmatory factor analysis. Research Quarterly for Exercise and Sport, 60, 48–58.
  • McGaugh, J. (2000). Memory: A century of consolidation. Science, 287, 248–251. doi:10.1126/science.287.5451.248
  • Mogenson, G. J., Jones, D. L., & Yim, C. H. I. Y. I. U. (1980). From motivation to action: functional interface between the limbic and motor system. Progress in Neurobiology, 14, 69–97.
  • Nudo, R., & Milliken, G. (1996). Use-dependent alterations of movement representations in primary motor cortex of adult squirrel monkeys. Journal of Neuroscience, 16, 785–807.
  • O'Brien, H. L., & Toms, E. G. (2008). What is user engagement? A conceptual framework for defining user engagement with technology. Journal of the American Society for Information Science & Technology, 59, 938–955.
  • O'Brien, H. L., & Toms, E. G. (2010). The development and evaluation of a survey to measure user engagement in e-commerce environments. Journal of the American Society for Information Science & Technology, 61, 50–69. doi:10.1002/asi.21229.1
  • Packard, M., Cahill, L., & McGaugh, J. L. (1994). Amygdala modulation of hippocampal-dependent and caudate nucleus-dependent memory processes. Proceedings of the National Academy of Science, 91, 8477–8481.
  • Robertson, E., Pascual-Leonne, A., & Miall, R. C. (2004). Current concepts in procedural consolidation. Nature Reviews Neuroscience, 5, 576–582.
  • Sanli, E., Patterson, J., Bray, S., & Lee, T. (2013). Understanding self-controlled motor learning protocols through the self-determination theory. Frontiers in Psychology, 3, 611. doi:10.3389/fpsyg.2012.00611
  • Schmidt, R., & Lee, T. (2011). Motor control and learning (5th ed.). Champaign, IL: Human Kinetics.
  • Shea, C. H., Lai, Q., Black, C., & Park, J.-H. (2000). Spacing practice sessions across days benefits the learning of motor skills. Human Movement Science, 19, 737–760. doi:10.1016/S0167-9457(00)00021-X
  • Soderstrom, N., & Bjork, R. (2015). Learning Versus Performance An Integrative Review. Perspectives on Psychological Science, 10, 176–199. doi:10.1177/1745691615569000
  • Squire, L. (1987). Memory and brain. New York, NY: Oxford University Press.
  • Waddell, K. J., Birkenmeier, R. L., Moore, J. L., Hornby, T. G., & Lang, C. E. (2014). Feasibility of high-repetition, task-specific training for individuals with upper-extremity paresis. The American Journal of Occupational Therapy, 68, 444–453. doi:10.5014/ajot.2014.011619
  • Williams, A. M., & Hodges, N. J. (Eds.). (2012). Skill acquisition in sport: Research, theory and practice (2nd ed.). London, England: Routledge.
  • Wise, R. A. (2004). Dopamine, learning and motivation. Nature Reviews Neuroscience, 5, 483–494. doi:10.1038/nrn1406
  • Wittmann, B. C., Schott, B. H., Guderian, S., Frey, J. U., Heinze, H.-J., & Düzel, E. (2005). Reward-related FMRI activation of dopaminergic midbrain is associated with enhanced hippocampus-dependent long-term memory formation. Neuron, 45, 459–467. doi:10.1016/j.neuron.2005.01.010
  • Wolosin, S. M., Zeithamova, D., & Preston, A. R. (2012). Reward modulation of hippocampal subfield activation during successful associative encoding and retrieval. Journal of Cognitive Neuroscience, 24, 1532–1547. doi:10.1162/jocn_a_00237
  • Wulf, G., & Adams, N. (2014). Small choices can enhance balance learning. Human Movement Science, 38, 235–240. doi:10.1016/j.humov.2014.10.007
  • Wulf, G., Chiviacowsky, S., & Cardozo, P. L. (2014). Additive benefits of autonomy support and enhanced expectancies for motor learning. Human Movement Science, 37, 12–20. doi:10.1016/j.humov.2014.06.004
  • Wulf, G., Shea, C., & Lewthwaite, R. (2010). Motor skill learning and performance: A review of influential factors. Medical Education, 44, 75–84.
  • Zimmerli, L., Jacky, M., Lünenburger, L., Riener, R., & Bolliger, M. (2013). Increasing patient engagement during virtual reality-based motor rehabilitation. Archives of Physical Medicine and Rehabilitation, 94, 1737–1746. doi:10.1016/j.apmr.2013.01.029

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.