223
Views
9
CrossRef citations to date
0
Altmetric
Research Article

Characteristics of Finger Tapping Are Not Affected by Heavy Strength Training

, , &
Pages 256-263 | Received 06 Feb 2015, Accepted 30 Aug 2015, Published online: 14 Oct 2015

REFERENCES

  • Aagaard, P., Simonsen, E., Andersen, J., Magnusson, S., Halkjaer-Kristensen, J., & Dyhre-Poulsen, P. (2000). Neural inhibition during maximal eccentric and concentric quadriceps contraction: Effects of resistance training. Journal of Applied Physiology, 89, 2249–2257.
  • Balter, J. E., & Zehr, E. P. (2007). Neural coupling between the arms and legs during rhythmic locomotor-like cycling movement. Journal of Neurophysiology, 97, 1809–1818.
  • Carroll, T. J., Selvanayagam, V., Riek, S., & Semmler, J. (2011). Neural adaptations to strength training: Moving beyond transcranial magnetic stimulation and reflex studies. Acta Physiologica, 202, 119–140.
  • De Luca, C. J., & Erim, Z. (1994). Common drive of motor units in regulation of muscle force. Trends in Neurosciences, 17, 299–305.
  • De Marchis, C., Schmid, M., Bibbo, D., Bernabucci, I., & Conforto, S. (2013). Inter-individual variability of forces and modular muscle coordination in cycling: A study on untrained subjects. Human Movement Science, 32, 1480–1494.
  • Dennerlein, J. T., Mote, C. Jr., & Rempel, D. M. (1998). Control strategies for finger movement during touch-typing the role of the extrinsic muscles during a keystroke. Experimental Brain Research, 121, 1–6.
  • Dominici, N., Ivanenko, Y. P., Cappellini, G., d'Avella, A., Mondì, V., Cicchese, M., … Lacquaniti, F. (2011). Locomotor primitives in newborn babies and their development. Science, 334, 997–999.
  • Falvo, M. J., Sirevaag, E. J., Rohrbaugh, J. W., & Earhart, G. M. (2010). Resistance training induces supraspinal adaptations: Evidence from movement-related cortical potentials. European Journal of Applied Physiology, 109, 923–933.
  • Faul, F., Erdfelder, E., Lang, A., & Buchner, A. (2007). G* power 3: A flexible statistical power analysis program for the social, behavioural, and biomedical sciences. Behavior Research Methods, 39, 175–191.
  • Gabriel, D. A., Kamen, G., & Frost, G. (2006). Neural adaptations to resistive exercise. Sports Medicine, 36, 133–149.
  • Hansen, E. A., Ebbesen, B. D., Dalsgaard, A., Mora-Jensen, M. H., & Rasmussen, J. (2015). Freely chosen index finger tapping frequency is increased in repeated bouts of tapping. Journal of Motor Behavior, 47, 490–496.
  • Hansen, E. A., & Ohnstad, A. E. (2008). Evidence for freely chosen pedaling rate during submaximal cycling to be a robust innate voluntary motor rhythm. Experimental Brain Research, 186, 365–373.
  • Hansen, E. A., Raastad, T., & Hallén, J. (2007). Strength training reduces freely chosen pedal rate during submaximal cycling. European Journal of Applied Physiology, 101, 419–426.
  • Hansen, E. A., Voigt, M., Kersting, U. G., & Madeleine, P. (2014). Frequency and pattern of rhythmic leg movement in humans after fatiguing exercises. Motor Control, 18, 297–309.
  • Hartley, G. L., & Cheung, S. S. (2013). Freely chosen cadence during a covert manipulation of ambient temperature. Motor Control, 17, 34–47.
  • Hund-Georgiadis, M., & von Cramon, D. Y. (1999). Motor-learning-related changes in piano players and non-musicians revealed by functional magnetic-resonance signals. Experimental Brain Research, 125, 417–425.
  • Jindrich, D. L., Zhou, Y., Becker, T., & Dennerlein, J. T. (2003). Non-linear viscoelastic models predict fingertip pulp force-displacement characteristics during voluntary tapping. Journal of Biomechanics, 36, 497–503.
  • Keen, D. A., & Fuglevand, A. J. (2004). Common input to motor neurons innervating the same and different compartments of the human extensor digitorum muscle. Journal of Neurophysiology, 91, 57–62.
  • Kriellaars, D., Brownstone, R., Noga, B., & Jordan, L. (1994). Mechanical entrainment of fictive locomotion in the decerebrate cat. Journal of Neurophysiology, 71, 2074–2086.
  • McCrea, D. A., & Rybak, I. A. (2008). Organization of mammalian locomotor rhythm and pattern generation. Brain Research Reviews, 57, 134–146.
  • Minassian, K., Persy, I., Rattay, F., Pinter, M., Kern, H., & Dimitrijevic, M. (2007). Human lumbar cord circuitries can be activated by extrinsic tonic input to generate locomotor-like activity. Human Movement Science, 26, 275–295.
  • Moussay, S., Dosseville, F., Gauthier, A., Larue, J., Sesboüe, B., & Davenne, D. (2002). Circadian rhythms during cycling exercise and finger-tapping task. Chronobiology International, 19, 1137–1149.
  • Perret, C., & Cabelguen, J. (1980). Main characteristics of the hindlimb locomotor cycle in the decorticate cat with special reference to bifunctional muscles. Brain Research, 187, 333–352.
  • Potier, T. G., Alexander, C. M., & Seynnes, O. R. (2009). Effects of eccentric strength training on biceps femoris muscle architecture and knee joint range of movement. European Journal of Applied Physiology, 105, 939–944.
  • Reilly, K. T., Nordstrom, M. A., & Schieber, M. H. (2004). Short-term synchronization between motor units in different functional subdivisions of the human flexor digitorum profundus muscle. Journal of Neurophysiology, 92, 734–742.
  • Rønnestad, B. R., Hansen, E. A., & Raastad, T. (2012). Strength training affects tendon cross-sectional area and freely chosen cadence differently in noncyclists and well-trained cyclists. The Journal of Strength & Conditioning Research, 26, 158–166.
  • Sardroodian, M., Madeleine, P., Voigt, M., & Hansen, E. (2014). Frequency and pattern of voluntary pedaling is influenced after one week of heavy strength training. Human Movement Science, 36, 58–69.
  • Shim, J. K., Hsu, J., Karol, S., Hurley, B. F. (2008). Strength training increases training-specific multifinger coordination in humans. Motor Control, 12, 311–329.
  • Shima, K., Tamura, Y., Tsuji, T., Kandori, A., & Sakoda, S. (2011). A CPG synergy model for evaluation of human finger tapping movements. Conference Proceedings of the IEEE Engineering in Medicine and Biology Society, 4443–4448.
  • Sternad, D., Dean, W. J., & Newell, K. M. (2000). Force and timing variability in rhythmic unimanual tapping. Journal of Motor Behavior, 32, 249–267.
  • Teo, W., Rodrigues, J., Mastaglia, F., & Thickbroom, G. (2013). Comparing kinematic changes between a finger-tapping task and unconstrained finger flexion–extension task in patients with Parkinson's disease. Experimental Brain Research, 227, 323–331.
  • Van de Crommert, H. W., Mulder, T., & Duysens, J. (1998). Neural control of locomotion: Sensory control of the central pattern generator and its relation to treadmill training. Gait & Posture, 7, 251–263.
  • Vangsgaard, S., Taylor, J. L., Hansen, E. A., & Madeleine, P. (2014). Changes in H reflex and neuromechanical properties of the trapezius muscle after 5 weeks of eccentric training: A randomized controlled trial. Journal of Applied Physiology, 116, 1623–1631.
  • Wing, A. M., & Kristoffersen, A. B. (1973). The timing of interresponse intervals. Perception and Psychophysics, 13, 455–460.
  • Zehr, E. P. (2005). Neural control of rhythmic human movement: The common core hypothesis. Exercise and Sport Sciences Reviews, 33, 54–60.
  • Zehr, E. P., Balter, J. E., Ferris, D. P., Hundza, S. R., Loadman, P. M., & Stoloff, R. H. (2007). Neural regulation of rhythmic arm and leg movement is conserved across human locomotor tasks. The Journal of Physiology, 582, 209–227.
  • Zentgraf, K., Lorey, B., Bischoff, M., Zimmermann, K., Stark, R., & Munzert, J. (2009). Neural correlates of attentional focusing during finger movements: A fMRI study. Journal of Motor Behavior, 41, 535–541.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.