313
Views
10
CrossRef citations to date
0
Altmetric
Research Article

Brain Activity (fNIRS) in Control State Differs from the Execution and Observation of Object-Related and Object-Unrelated Actions

&
Pages 289-296 | Received 20 May 2015, Accepted 06 Sep 2015, Published online: 16 Dec 2015

REFERENCES

  • Agnew, Z. K., Wise, R. J., & Leech, R. (2012). Dissociating object directed and non-object directed action in the human mirror system; implications for theories of motor simulation. PLoS One, 7(4), e32517.
  • Andric, M., & Small, S. L. (2012). Gesture's neural language. Frontiers in Psychology, 3, 99.
  • Bajaj, S., Drake, D., Butler, A. J., & Dhamala, M. (2014). Oscillatory motor network activity during rest and movement: An fNIRS study. Frontiers in System Neuroscience, 4, 8–13.
  • Balconi, M., & Caldiroli, C. (2011). Semantic violation effect on object-related action comprehension. N400-like event-related potentials for unusual and incorrect use. Neuroscience, 197, 191–199.
  • Balconi, M., Canavesio, Y., & Vitaloni, S. (2014). The contribution of dorsolateral prefrontal cortex and temporoparietal areas in processing instrumental versus functional semantic violations in action representation. Journal of Clinical and Experimental Neuropsychology, 36, 701–715.
  • Balconi, M., & Vitaloni, S. (2014). N400 effect when a semantic anomaly is detected in action representation. A source localization analysis. Journal of Clinical Neurophysiology, 31, 58–64.
  • Binkofski, F., Buccino, G., Posse, S., Seitz, R. J., Rizzolatti, G., & Freund, H. J. (1999). A fronto-parietal circuit for object manipulation in man: Evidence from an fMRI-study. European Journal of Neuroscience, 11, 3276–3286.
  • Bonda, E., Petrides, M., Ostry, D., & Evans, A. (1996). Specific involvement of human parietal systems and the amygdala in the perception of biological motion. Journal of Neuroscience, 16, 3737–3744.
  • Buccino, G., Binkofski, F., Fink, G. R., Fadiga, L., Fogassi, L., Gallese, V., & Freund, H. J. (2001). Action observation activates premotor and parietal areas in a somatotopic manner: An fMRI study. European Journal of Neuroscience, 13, 400–404.
  • Caspers, S., Zilles, K., Laird, A. R., & Eickhoff, S. B. (2010). ALE meta-analysis of action observation and imitation in the human brain. Neuroimage, 50, 1148–1167.
  • Catalan, M. J., Honda, M., Weeks, R. A., Cohen, L. G., & Hallett, M. (1998). The functional neuroanatomy of simple and complex sequential finger movements: A PET study. Brain, 121, 253–264.
  • Cross, E. S., Kraemer, D. J. M., Hamilton, A. F. D. C., Kelley, W. M., & Grafton, S. T. (2009). Sensitivity of the action observation network to physical and observational learning. Cerebral Cortex, 19, 315–326.
  • Culham, J. C., Danckert, S. L., DeSouza, J. F., Gati, J. S., Menon, R. S., & Goodale, M. A. (2003). Visually guided grasping produces fMRI activation in dorsal but not ventral stream brain areas. Experimental Brain Research, 153, 180–189.
  • Decety, J., Grèzes, J., Costes, N., Ma, D., Jeannerod, M., Procyk, E., & Fazio, F. (1997). Brain activity during observation of actions. Influence of action content and subject's strategy. Brain, 120, 1763–1777.
  • Ferrari, M., & Quaresima, V. (2012). A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application. Neuroimage, 63, 921–935.
  • Fridman, E. A., Immisch, I., Hanakawa, T., Bohlhalter, S., Waldvogel, D., Kansaku, K., & Hallett, M. (2006). The role of the dorsal stream for gesture production. Neuroimage, 29, 417–428.
  • Gallese, V., & Goldman, A. (1998). Mirror neurons and the simulation theory of mind-reading. Trends in Cognitive Sciences, 2, 493–501.
  • Ganis, G., & Kutas, M. (2003). An electrophysiological study of scene effects on object identification. Cognitive Brain Research, 16, 123–144.
  • Grafton, S. T. (2009). Embodied cognition and the simulation of action to understand others. Annals of NewYork Academy of Sciences, 1156, 97–117.
  • Grèzes, J., Armony, J. L., Rowe, J., & Passingham, R. E. (2003). Activations related to “mirror” and “canonical” neurones in the human brain: an fMRI study. Neuroimage, 18, 928–937.
  • Grèzes, J., Costes, N., & Decety, J. (1998). Top down effect of the strategy to imitate on the brain areas engaged in perception of biological motion: A PET investigation. Cognitive Neuropsychology, 15, 553–582.
  • Grèzes, J., & Decety, J. (2001) Functional anatomy of execution, mental simulation, observation, and verb generation of actions: a meta-analysis. Human Brain Mapping, 12, 1–19.
  • Hermsdörfer, J., Goldenberg, G., Wachsmuth, C., Conrad, B., Ceballos-Baumann, A. O., Bartenstein, P.,  … Boecker, H. (2001). Cortical correlates of gesture processing: clues to the cerebral mechanisms underlying apraxia during the imitation of meaningless gestures. Neuroimage, 14, 149–161.
  • Heyes, C. (2010). Where do mirror neurons come from? Neuroscience and Biobehavioral Reviews. 34, 575–583.
  • Hickok, G., & Hauser, M. (2010). (Mis)understanding mirror neurons. Current Biology, 20, 593–594.
  • Iacoboni, M., Molnar-Szakacs, I., Gallese, V., Buccino, G., Mazziotta, J. C., & Rizzolatti, G. (2005). Grasping the intentions of others with one's own mirror neuron system. PLoS, Biology, 3(3), e79.
  • Iacoboni, M., Woods, R. P., Brass, M., Bekkering, H., Mazziotta, J. C., & Rizzolatti, G. (1999). Cortical mechanisms of human imitation. Science, 286, 2526–2528.
  • Jeannerod, M. (1994). The representing brain: Neural correlates of motor intention and imagery. Behavioral and Brain Sciences, 17, 187–245.
  • Jeannerod, M. (1997). The cognitive neuroscience of action. New York, NY: Blackwell.
  • Jenkins, I. H., Brooks, D. J., Nixon, P. D., Frackowiak, R. S. J., & Passingham, R. E. (1994). Motor sequence learning: A study with positron emission tomography. Journal of Neuroscience, 14, 3775–3790.
  • Koehler, S., Egetemeir, J., Stenneken, P., Koch, S. P., Pauli, P., Fallgatter, A. J., & Herrmann, M. J. (2012). The human execution/observation matching system investigated with complex everyday task: a functional near-infrared spectroscopy (fNIRS) study. Neuroscience Letters 508, 73–77.
  • Krams, M., Rushworth, M. F., Deiber, M. P., Frackowiak, R. S., & Passingham, R. E. (1998). The preparation, execution and suppression of copied movements in the human brain. Experimental Brain Reserch, 120, 386–398.
  • Króliczak, G. (2013). Representations of transitive and intransitive gestures: perception and imitation. Journal of Neuroscience and Neuroengineering, 2, 195–210.
  • Lewis, J. W., Brefczynski, J. A., Phinney, R. E., Janik, J. J., & DeYoe, E. A. (2005). Distinct cortical pathways for processing tool versus animal sounds. Journal of Neuroscience, 25, 5148–5158.
  • Leff, D. R., Orihuela-Espina, F., Elwell, C. E., Athanasiou, T., Delpy, D. T., Darzi, A. W., & Yang, G. Z. (2011). Assessment of the cerebral cortex during motor task behaviours in adults: a systematic review of functional near infrared spectroscopy (fNIRS) studies. Neuroimage, 54, 2922–2936.
  • Lui, F., Buccino, G., Duzzi, D., Benuzzi, F., Crisi, G., Baraldi, P., … Rizzolatti, G. (2008). Neural substrates for observing and imagining non-objectdirected actions. Social Neuroscience, 3, 261–275.
  • Matsuda, G., & Hiraki, K. (2006). Sustained decrease in oxygenated hemoglobin during video games in the dorsal prefrontal cortex: a NIRS study of children, Neuroimage, 29, 706–711.
  • Matsumura, M., Kawashima, R., Naito, E., Satoh, K., Takahashi, T., Yanagisawa, T., & Fukuda, H. (1996). Changes in rCBF during grasping in humans examined by PET. Neuroreport, 7, 749–752.
  • Molenberghs, P., Cunnington, R., & Mattingley, J. B. (2012). Brain regions with mirror properties: a meta-analysis of 125 human fMRI studies. Neuroscience & Biobehavior Reviews, 36, 341–349.
  • Montgomery, K. J., Gobbini, M. I., & Haxby, J. V. (2003). Imitation, production and viewing of social communication: an fMRI study. Society for Neuroscience Abstracts, 128, 10.
  • Oldfield, R. C. (1971). The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia, 9, 97–113.
  • Passingham, R. E. (1996). Functional specialization of the supplementary motor area in monkeys and humans. In H. O. Lüders (Eds.), Supplementary sensorimotor area, advances in neurology (Vol. 70, pp. 105–116). Philadelphia, PA: Lippincott-Raven.
  • Peeters, R., Simone, L., Nelissen, K., Fabbri Destro, M., Vanduffel, W., Rizzolatti, G., & Orban, G. A. (2009). The representation of tool use in humans and monkeys: Common and uniquely human features. The Journal of Neuroscience, 29, 11523–11539.
  • Peigneux, P., Van der Linden, M., Andres-Benito, P., Sadzot, B., Franck, G., & Salmon, E. (2000). Exploration neuropsychologique et par imagerie fonctionelle cérébrale d'une apraxie visuo-imitative. Revue Neurologique (Paris) 156, 459–472.
  • Perani, D., Fazio, F., Borghese, N. A., Tettamanti, M., Ferrari, S., Decety, J., & Gilardi, M. C. (2001) Different brain correlates for watching real and virtual hand actions. Neuroimage, 14, 749–758.
  • Pfurtscheller, G., Bauernfeind, G., Neuper, C., & Lopes da Silva, F. H. (2012). Does conscious intention to perform a motor act depend on slow prefrontal (de)oxyhemoglobin oscillations in the resting brain? Neuroscience Letters, 508, 89–94.
  • Proverbio, M. A., Riva, F., & Zani, A. (2010). When neurons do not mirror the agent's intentions: sex differences in neural coding of goal-directed actions. Neuropsychologia, 48, 1454–1463.
  • Ramsey, R., & Hamilton, A. F. (2010). Understanding actor and object goals in the human brain. Neuroimage, 50, 1142–1147.
  • Rizzolatti, G., & Craighero, L. (2004). The mirror-neuron system. Annual Review of Neuroscience, 27, 169–192.
  • Rizzolatti, G., Fadiga, L., Gallese, V., & Fogassi, L. (1996). Premotor cortex and the recognition of motor actions. Cognitive Brain Research. 3, 131–141.
  • Sadato, N., Campbell, G., Ibanez, V., Deiber, M. P., & Hallett, M. (1996). Complexity affects regional cerebral blood flow change during sequential finger movements. Journal of Neuroscience, 16, 2693–2700.
  • Schroeter, M. L., Zysset, S., Kruggel, F., & von Cramon, D. Y. (2003). Age dependency of the hemodynamic response as measured by functional near-infrared spectroscopy. Neuroimage, 19, 555–564.
  • Shimada, S., & Hiraki, K. (2006). Infant's brain responses to live and televised action. Neuroimage, 32, 930–939.
  • Shmuelof, L., & Zohary, E. (2005). Dissociation between ventral and dorsal fMRI activation during object and action recognition. Neuron, 47, 457–470.
  • Shmuelof, L., & Zohary, E. (2006). A mirror representation of others' action in the human anterior parietal cortex. Journal of Neuroscience, 26, 9736–9742.
  • Sitnikova, T., Holcomb, P. J., Kiyonaga, K. A., & Kuperberg, G. R. (2008). Two neurocognitive mechanisms of semantic integration during the comprehension of visual real-world events. Journal of Cognitive Neuroscience, 20, 2037–2057.
  • Stephan, K. M., Fink, G. R., Passingham, R. E., Silbersweig, D., Ceballos-Baumann, A. O., Frith, C. D., & Frackowiak, R. S. J. (1995). Functional anatomy of the mental representation of upper extremity movements in healthy subjects. Journal of Neurophysiology, 73, 373–386.
  • Tuscan, L., Herbert, J. D., Forman, E. M., Juarascio, A. S., Izzetoglu, M., & Schultheis, M. (2013). Exploring frontal asymmetry using functional near-infrared spectroscopy: A preliminary study of the effects of social anxiety during interaction and performance tasks. Brain Imaging Behavior, 7, 140–153.
  • Van Elk, M., van Schie, H. A. T., & Bekkering, O. (2010). N400-concreteness effect reflects the retrieval of semantic information during the preparation of meaningful actions. Biological Psychology, 85:134–142.
  • Villarreal, M., Fridman, E. A., Amengual, A., Falasco, G., Gerschcovich, E. R., Gerscovich, E. R., … Leiguarda, R. C. (2008). The neural substrate of gesture recognition. Neuropsychologia, 46, 2371–2382.
  • Wriessnegger, S. C., Kurzmann, J., & Neuper, C. (2008). Spatio-temporal differences in brain oxygenation between movement execution and imagery: A multichannel near-infrared spectroscopy study. International Journal of Psychophysiology, 67, 54–63.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.