625
Views
14
CrossRef citations to date
0
Altmetric
Research Article

Pupil Diameter May Reflect Motor Control and Learning

&
Pages 141-149 | Received 11 Aug 2015, Accepted 28 Feb 2016, Published online: 11 Aug 2016

REFERENCES

  • Beatty, J. (1982). Task-evoked pupillary responses, processing load, and the structure of processing resources. Psychological Bulletin, 91, 276–292. doi:10.1037/0033-2909.91.2.276
  • Bouret, S., & Sara, S. J. (2004). Reward expectation, orientation of attention and locus coeruleus-medial frontal cortex interplay during learning. European Journal of Neuroscience, 20, 791–802. doi:10.1111/j.1460-9568.2004.03526.x
  • Chapman, C. R., Oka, S., Bradshaw, D. H., Jacobson, R. C., & Donaldson, G. W. (1999). Phasic pupil dilation response to noxious stimulation in normal volunteers: Relationship to brain evoked potentials and pain report. Psychophysiology, 36, 44–52. doi:10.1017/S0048577299970373
  • Darwin, C. (1872). The expression of the emotions in man and animals. New York, NY: D. Appleton & Company.
  • De Brouwer, S., Yuksel, D., Blohm, G., Missal, M., & Lefèvre, P. (2002). What triggers catch-up saccades during visual tracking? Journal of Neurophysiology, 87, 1646–1650.
  • Desmurget, M., & Sirigu, A. (2009). A parietal-premotor network for movement intention and motor awareness. Trends in Cognitive Sciences, 13, 411–419. doi:10.1016/j.tics.2009.08.001
  • Ehrsson, H. H., Geyer, S., & Naito, E. (2003). Imagery of voluntary movement of fingers, toes, and tongue activates corresponding body-part-specific motor representations. Journal of Neurophysiology, 90, 3304–3316. doi:10.1152/jn.01113.2002
  • Gerardin, E., Sirigu, A., Lehéricy, S., Poline, J. B., Gaymard, B., Marsault, C., & Le Bihan, D. (2000). Partially overlapping neural networks for real and imagined hand movements. Cerebral Cortex, 10, 1093–1104. doi:10.1093/cercor/10.11.1093
  • Granholm, E., & Steinhauer, S. R. (2004). Pupillometric measures of cognitive and emotional processes. International Journal of Psychophysiology, 52, 1–6. doi:10.1016/j.ijpsycho.2003.12.001
  • Hakerem, G., & Sutton, S. (1966). Pupillary response at visual threshold. Nature, 212, 485–486.
  • Hayashi, N., Someya, N., & Fukuba, Y. (2010). Effect of intensity of dynamic exercise on pupil diameter in humans. Journal of Physiological Anthropology, 29, 119–122. doi:10.2114/jpa2.29.119
  • Hess, E. H., & Polt, J. M. (1960). Pupil size as related to interest value of visual stimuli. Science, 132, 349–350. doi:10.1126/science.132.3423.349
  • Hess, E. H., & Polt, J. M. (1964). Pupil size in relation to mental activity during simple problem-solving. Science, 143, 1190–1192. doi:10.1126/science.143.3611.1190
  • Hund-Georgiadis, M., & Von Cramon, D. Y. (1999). Motor-learning-related changes in piano players and non-musicians revealed by functional magnetic-resonance signals. Experimental Brain Research, 125, 417–425. doi:10.1007/s002210050698
  • Hupé, J. M., Lamirel, C., & Lorenceau, J. (2009). Pupil dynamics during bistable motion perception. Journal of Vision, 9(7), 10. doi:10.1167/9.7.10
  • Kahneman, D., & Beatty, J. (1966). Pupil diameter and load on memory. Science, 154, 1583–1585. doi:10.1126/science.154.3756.1583
  • Kawato, M. (1999). Internal models for motor control and trajectory planning. Current Opinion Neurobiology, 9, 718–727. doi:10.1016/S0959-4388(99)00028-8
  • Laeng, B., Bloem, I. M., D'Ascenzo, S., & Tommasi, L. (2014). Scrutinizing visual images: The role of gaze in mental imagery and memory. Cognition, 131, 263–283. doi:10.1016/j.cognition.2014.01.003
  • Laeng, B., & Sulutvedt, U. (2014). The eye pupil adjusts to imaginary light. Psychology Science, 25, 188–197. doi:
  • Macuga, K. L., & Frey, S. H. (2012). Neural representations involved in observed, imagined, and imitated actions are dissociable and hierarchically organized. NeuroImage, 59, 2798–2807. doi:10.1016/j.neuroimage.2011.09.083
  • Mast, F. W., & Kosslyn, S. M. (2002). Eye movements during visual mental imagery. Trends in Cognitive Sciences, 6, 271–272. doi:10.1016/S1364-6613(02)01931-9
  • Nair, D. G., Purcott, K. L., Fuchs, A., Steinberg, F., & Kelso, J. A. S. (2003). Cortical and cerebellar activity of the human brain during imagined and executed unimanual and bimanual action sequences: A functional MRI study. Cognitive Brain Research, 15, 250–260. doi:10.1016/S0926-6410(02)00197-0
  • Privitera, C. M., Renninger, L. W., Carney, T., Klein, S., & Aguilar, M. (2010). Pupil dilation during visual target detection. Journal of Vision, 10(10). 3. doi:10.1167/10.10.3
  • Reinhard, G., & Lachnit, H. (2002). The effect of stimulus probability on pupillary response as an indicator of cognitive processing in human learning and categorization. Biological Psychology, 60, 199–215. doi:10.1016/S0301-0511(02)00031-5
  • Schaal, S., Sternad, D., Osu, R., & Kawato, M. (2004). Rhythmic arm movement is not discrete. Nature Neuroscience, 7, 1137–1144. doi:10.1038/mm1322
  • Schneider, W., & Shiffrin, R. M. (1977). Controlled and automatic human information processing: I. Detection, search, and attention. Psychological Review, 84, 1–66. doi:10.1037/0033-295X.84.1.1
  • Simpson, H. M. (1969). Effects of a task-relevant response on pupil size. Psychophysiology, 6, 115–121.
  • Simpson, H. M., & Paivio, A. (1968). Effects on pupil size of manual and verbal indicators of cognitive task fulfillment. Perception & Psychophysics, 3, 185–190. doi:10.3758/BF03212726
  • Sirigu, A, Duhamel, J. R., Cohen, L., Pillon, B., Dubois, B., & Agid, Y. (1996). The mental representation of hand movements after parietal cortex damage. Science, 273, 1564–1568. doi:10.1126/science.273.5281.1564
  • Steinhauer, S. R., Siegle, G. J., Condray, R., & Pless, M. (2004). Sympathetic and parasympathetic innervation of pupillary dilation during sustained processing. International Journal of Psychophysiology, 52, 77–86. doi:10.1016/j.ijpsycho.2003.12.
  • White, G., & Maltzman, I. (1978). Pupillary activity while listening to verbal passages. Journal of Research in Personality, 12, 361–369.
  • Wiestler, T., & Diedrichsen, J. (2013). Skill learning strengthens cortical representations of motor sequences. eLife, 2, e00801. doi:10.7554/eLife.00801
  • Zénon, A., Sidibé, M., & Olivier, E. (2014). Pupil size variations correlate with physical effort perception. Frontiers in Behavioral Neuroscience, 8, 1–8. doi:10.3389/fnbeh.2014.00286

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.