107
Views
4
CrossRef citations to date
0
Altmetric
RESEARCH ARTICLE

Alternating Adaptation of Eye and Hand Movements to Opposite Directed Double Steps

&
Pages 255-264 | Received 27 Jul 2015, Accepted 05 Apr 2016, Published online: 09 Dec 2016

References

  • Alahyane, N., Fonteille, V., Urquizar, C., Salemme, R., Nighoghossian, N., Pelisson, D., & Tilikete, C. (2008). Separate neural substrates in the human cerebellum for sensory-motor adaptation of reactive and of scanning voluntary saccades. Cerebellum, 7, 595–601.
  • Alahyane, N., & Pélisson, D. (2005). Long-lasting modifications of saccadic eye-movements following adaptation induced in the double-step paradigm. Learning & Memory, 12, 433–443.
  • Becker, W., & Juergens, R. (1979). An analysis of the saccadic system by means of double step stimuli. Vision Research, 19, 967–983.
  • Bock, O. (2013). Basic principles of sensorimotor adaptation to different distortions with different effectors and movement types: A review and synthesis of behavioral findings. Frontiers in Human Neuroscience, 7(81), 1–5.
  • Bock, O., & Girgenrath, M. (2006). Relationship between sensorimotor adaptation and cognitive functions in younger and older subjects. Experimental Brain Research, 169, 400–406.
  • Bock, O., & Schmitz, G. (2011). Adaptation to rotated visual feedback depends on the num-ber and spread of target locations. Experimental Brain Research, 209, 409–413.
  • Bock, O., & Schmitz, G. (2013). Transfer of visuomotor adaptation to unpractised hands and sensory modalities. Psychology, 4, 1004–1007. dx.doi.org/10.4236/psych.2013.412145
  • Bock, O., Schmitz, G., & Grigorova, V. (2008). Transfer of adaptation between ocular saccades and arm movements. Human Movement Science, 27, 383–395.
  • Borisova, S., Bock, O., & Grigorova, V. (2014). Concurrent directional adaptation of reactive saccades and hand movements to target displacements of different size. Journal of Motor Behavior, 46, 303–308.
  • Cotti, J., Guillaume, A., Alahyane, N., Pelisson, D., & Vercher, J. L. (2007). Adaptation of voluntary saccades, but not of reactive saccades, transfers to hand pointing movements. Journal of Neurophysiology, 98, 602–612.
  • Cotti, J., Vercher, J. L., & Guillaume, A. (2011). Hand-eye coordination relies on extra-retinal signals: Evidence from reactive saccade adaptation. Behavioral Brain Research, 218, 248–252.
  • Courjon, J. H., Olivier, E., & Pelisson, D. (2004). Direct evidence for the contribution of the superior colliculus in the control of visually guided reaching movements in the cat. Journal of Physiology, 556, 675–681.
  • Cunningham, H. A., & Welch, R. B. (1994). Multiple Concurrent Visual-Motor Mappings: Implications for Models of Adaptation. Journal of Experimental Psychology: Human Perception and Performance, 20, 987–999.
  • Deubel, H. (1987). Adaptivity of gain and direction in oblique saccades. In J. O'Regan & A. Levy-Schoen (Eds.), Eye movements: From physiology to cognition (pp. 181–190). Dordrecht, the Netherlands: Elsevier.
  • Deubel, H. (1991). Adaptive control of saccade metrics. In G. Obrecht & L. W. Stark (Eds.), Presbyopia research: From molecular biology to visual adaptation. (pp. 93–100) New York, NY: Plenum Press.
  • Ernst, M. O., & Banks, M. S. (2002). Humans integrate visual and haptic information in a statistically optimal fashion. Nature, 415, 429–433.
  • Ethier, V., Zee, D. S., & Shadmehr, R. (2008). Spontaneous recovery of motor memory during saccade adaptation. Journal of Neurophysiology, 99, 2577–2583.
  • Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39, 175–191.
  • Fernandez-Ruiz, J., Wong, W., Armstrong, I. T., & Flanagan, J. R. (2011). Relation between reaction time and reach errors during visuomotor adaptation. Behavioral Brain Research, 219, 8–14.
  • Frens, M. A., & van Opstal, A. J. (1994). Transfer of short-term adaptation in human saccadic eye movements. Experimental Brain Research, 100, 293–306.
  • Frens, M. A., & van Opstal, A. J. (1997). Monkey superior colliculus activity during short-term saccadic adaptation. Brain Research Bulletin, 43, 473–483.
  • Gorbet, D. J., & Sergio, L. E. (2009). The behavioural consequences of dissociating the spatial directions of eye and arm movements. Brain Research, 1284, 77–88.
  • Gorbet, D. J., & Sergio, L. E. (2016). Don't watch, where you are going: The neural correlates of decoupling eye and arm movements. Behavioral Brain Research, 298, 229–240.
  • Grigorova, V., Bock, O., & Borisova, S. (2013). Concurrent adaptation of reactive saccades and hand pointing movements to equal and to opposite changes of target directions. Experimental Brain Research, 226, 63–71.
  • Grigorova, V., Bock, O., Borisova, S., Ilieva, M., & Schmitz, G. (2010). Double step adaptation of saccade directions: A comparison of constant and saccade triggered interstep intervals. Comptes rendus de l´Académie Bulgare des Sciences, 63, 157–162.
  • Grigorova, V., Bock, O., Ilieva, M., & Schmitz, G. (2013). Directional adaptation of reactive saccades and hand pointing movements is not independent. Journal of Motor Behavior, 45, 101–106.
  • Hatada, Y., Rossetti, Y. & Miall, R. C. (2006). Long-lasting aftereffect of a single prism adaptation: Shifts in vision and proprioception are independent. Experimental Brain Research, 173, 415–424.
  • Henson, D. (1978). Corrective saccades: Effects of altering visual feedback. Vision Research, 18, 63–67.
  • Hernandez, T. D., Levitan, C. A., Banks, M. S., & Schor, C. M. (2008). How does saccade adaptation affect visual perception? Journal of Vision, 8, 3–16.
  • Huberdeau, D. M., Krakauer, J. W., & Haith, A. M. (2015). Dual-process decomposition in human sensorimotor adaptation. Current Opinion in Neurobiology, 33, 71–77.
  • Imamizu, H., & Kawato, M. (2009). Brain mechanisms for predictive control by switching internal models: Implications for higher-order cognitive functions. Psychological Research, 73, 527–544.
  • Imamizu, H., Sugimoto, N., Osu, R., Tsutsui, K., Sugiyama, K., Wada, Y., & Kawato, M. (2007). Explicit contextual information selectively contributes to predictive switching of internal models. Experimental Brain Research, 181, 395–408.
  • Imamizu, H., Uno, Y., & Kawato, M. (1995). Internal representations of the motor apparatus: Implications from generalization in visuomotor learning. Journal of Experimental Psychology: Human Perception and Performance, 21, 1174–1198.
  • Itti, L., Rees, G., & Tsotsos, J. K. (2005). Neurobiology of attention. New York, NY: Elsevier Academic Press.
  • Krakauer, J. W., Pine, Z. M., Ghilardi, M. F., & Ghez, C. (2000). Learning of visuomotor transformations for vectorial planning of reaching trajectories. Journal of Neuroscience, 20, 8916–8924.
  • Lee, J. Y., & Schweighofer, N. (2009). Dual adaptation supports a parallel architecture of motor memory. Journal of Neuroscience, 29, 10396–10404.
  • Lunenburger, L., Kleiser, R., Stuphorn, V., Miller, L. E., & Hoffmann, K. P. (2001). A possible role of the superior colliculus in eye-hand coordination. Progress in Brain Research, 134, 109–125.
  • McLaughlin, S. C. (1967). Parametric adjustment in saccadic eye movements. Perception & Psychophysics, 2, 359–362.
  • McNay, E. C., & Willingham, D. B. (1998). Deficit in learning of a motor skill requiring strategy, but not of perceptuomotor recalibration, with aging. Learning and Memory, 4, 411–420.
  • Miller, J., Anstis, T., & Templeton, W. (1981). Saccadic plasticity: Parametric adaptive control by retinal feedback. Journal of Experimental Psychology, 7, 356–366.
  • Morten, S. M., & Bastian, A. J. (2004). Prism adaptation during walking generalizes to reaching and requires the cerebellum. Journal of Neurophysiology, 92, 2497–2509.
  • Neggers, S. F., & Bekkering, H. (2002). Coordinated control of eye and hand movements in dynamic reaching. Human Movement Science, 21, 349–376.
  • Noto, C. T., Watanabe, S., & Fuchs, A. F. (1999). Characteristics of simian adaptation fields produced by behavioral changes in saccade size and direction. Journal of Neurophysiology, 81, 2798–2813.
  • Osu, R., Hirai, S., Yoshioka, T., & Kawato, M. (2004). Random presentation enables subjects to adapt to two opposing forces on the hand. Nature Neuroscience, 7, 111–112.
  • Pelisson, D., Alahyane, N., Panouillères, M., & Tilkite, C. (2012). Sensorimotor adaptation of saccadic eye movements. Neuroscience and Biobehavioral Review, 34, 1103–1120.
  • Redding, G. M., & Wallace, B. (1996). Adaptive spatial alignment and strategic perceptual-motor control. Journal of Experimental Psychology: Human Perception and Performance, 22, 379–394.
  • Redding, G. M., & Wallace, B. (2004). First-trial “adaptation” to prism exposure: Artifact of visual capture. Journal of Motor Behavior, 36, 291–304.
  • Reuter, E., Bednark, J., & Cunnington, R. (2015). Reliance on visual attention during visuomotor adaptation: An SSVEP study. Experimental Brain Research, 233, 2041–2051.
  • Saunders, J. A. & Knill, D. C. (2003). Humans use continuous visual feedback from the hand to control fast reaching movements. Experimental Brain Research, 152, 341–352.
  • Savin, D. N., & Morton, S. M. (2008). Asymmetric generalization between the arm and leg following prism-induced visuomotor adaptation. Experimental Brain Research, 186, 175–182.
  • Schmitz, G., Bock, O., Grigorova, V., & Borisova, S. (2012). Adaptation of hand movements to double-step targets and to distorted visual feedback: Evidence for shared mechanisms. Human Movement Science, 31, 791–800.
  • Schmitz, G., Bock, O., Grigorova, V., & Ilieva, M. (2010). Adaptation of eye and hand movements to target displacements of different size. Experimental Brain Research, 203, 479–484.
  • Seidler, R. D., Bloomberg, J. J., & Stelmach, G. E. (2001). Context-dependent arm pointing adaptation. Behavioral Brain Research, 119, 155–166.
  • Shadmehr, R., Smith, R. A., & Krakauer, J. W. (2010). Error correction, sensory prediction, and adaptation in motor control. Annual Reviews of Neuroscience, 33, 89–108.
  • Smith, M. A., Ghazizadeh, A., & Shadmehr, R. (2006). Interacting adaptive processes with different timescales underlie short-term motor learning. PLoS Biology, 4(6), e179.
  • Takeichi, N., Kaneko, C. R., & Fuchs, A. F. (2007). Activity changes in monkey superior colliculus during saccade adaptation. Journal of Neurophysiology, 97, 4096–4107.
  • Tong, C., Wolpert, D., & Flanagan, J. (2002). Kinematics and dynamics are not represented independently in motor working memory: Evidence from an interference study. Journal of Neuroscience, 22, 1106–1113.
  • van Sonderen, J. F., Denier van der Gon, J. J., & Gielen, C. C. A. M. (1988). Conditions determining early modification of motor programmes in response to changes in target location. Experimental Brain Research, 71, 320–328.
  • Wang, J. (2008). A dissociation between visual and motor workspace inhibits generalization of visuomotor adaptation across the limbs. Experimental Brain Research, 187, 483–490.
  • Wang, J., & Sainburg, R. L. (2006). The symmetry of interlimb transfer depends on workspace locations. Experimental Brain Research, 170, 464–471.
  • Welch, R. B. (1978). Perceptual modification. Adapting to altered sensory environments. New York, NY: Academic Press.
  • Welch, R. B., Bridgeman, B., Anand, S., & Browman, K. (1993). Alternating prism exposure causes dual adaption and generalization to a novel displacement. Perception & Psychophysics, 54, 195–204.
  • Werner, S., Bock, O., & Timmann, D. (2009). The effect of cerebellar cortical degeneration on adaptive plasticity and movement control. Experimental Brain Research, 193, 189–196.
  • Wigmore, V., Tong, C., & Flanagan, J. R. (2002). Visuomotor rotations of varying size and direction compete for single internal model in working memory. Journal of Experimental Psychology: Human Perception and Performance, 28, 447–457.
  • Woolley, D. G., Tresilian, J. R., Carson, R. G., & Riek, S. (2007). Dual adaptation to two opposing visuomotor rotations when each is associated with different regions of workspace. Experimental Brain Research, 179, 155–165.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.