206
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Whole-Body Movements in Long-Term Weightlessness: Hierarchies of the Controlled Variables Are Gravity-Dependent

, &
Pages 568-579 | Received 16 Jul 2015, Accepted 22 Jul 2016, Published online: 27 Dec 2016

REFERENCES

  • Alexander, R. M. (1997). A minimum energy cost hypothesis for human arm trajectories. Biological Cybernetics, 76, 97–105.
  • Anderson, F. C., & Pandy, M. G. (1999). A dynamic optimization solution for vertical jumping in three dimensions. Computer Methods in Biomechanics and Biomedical Engineering, 2, 201–231.
  • Badger, J., Hulse, A., Taylor, Ross, Curtis, A., Gooding, D., & Thackston, A. (2013, October). Model-based robotic dynamic motion control for the robonaut 2 humanoid robot. Paper presented at IEEE Humanoids 2013, IEEE-RAS International Conference on Humanoid Robotics, Atlanta, GA, October 15–17, 2013, IEEE. http://dx.doi.org/10.1109/HUMANOIDS.2013.7029956
  • Baroni, G., Pedrocchi, A., Ferrigno, G., Massion, J., & Pedotti, A. (2001). Static and dynamic postural control in long-term microgravity: Evidence of a dual adaptation. The Journal of Applied Physiology, 90, 205–215.
  • Bock, O., Vercher, J.-L., & Gauthier G. (2005). Wrist vibration affects the production of finely graded forces. Aviation, Space, and Environmental Medicine, 76, 435–440.
  • Casellato, C., Pedrocchi, A., Zorzi, G., Vernisse, L., Ferrigno, G., & Nardocci, N. (2013). EMG-based visual-haptic biofeedback: A tool to improve motor control in children with primary dystonia. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 21, 474–480.
  • Casellato, C., Tagliabue, M., Pedrocchi, A., Papaxanthis, C., Ferrigno, G., & Pozzo, T. (2012). Reaching while standing in microgravity: A new postural solution to oversimplify movement control. Experimental Brain Research, 216, 203–215.
  • Chabeauti, P. Y., Assaiante, C., & Vaugoyeau, M. (2012). Extreme short-term environmental constraints do not update internal models of action as assessed from motor imagery in adults. Neuroscience 222, 69–74.
  • Clément, G., Gurfinkel, V. S., Lestienne, F., Lipshits, M. I., & Popov, K. E. (1984). Adaptation of postural control to weightlessness. Experimental Brain Research, 57, 61–72.
  • Collins, S. H., Adamczyk, P. G., & Kuo, A. D. (2009). Dynamic arm swinging in human walking. Proceedings Biological Sciences, 276, 3679–3688.
  • Crevecoeur, F., McIntyre, J., Thonnard, J.-L., & Lefèvre, P. (2010). Movement stability under uncertain internal models of dynamics. Journal of Neurophysiology, 104, 1301–1313.
  • Crevecoeur, F., McIntyre, J., Thonnard, J.-L., & Lefèvre, P. (2014). Gravity-dependent estimates of object mass underlie the generation of motor commands for horizontal limb movements. Journal of Neurophysiology, 112, 384–392.
  • De Leva, P. (1999). Adjustments to Zatsiorsky-Seluyanov's segment inertia parameters. Journal of Biomechanics, 29, 1223–1230.
  • Ferrigno, G., Pedrocchi, A., Baroni, G., Bracciaferri, F., Neri, G., & Pedotti, A. (2004). ELITE-S2: The multifactorial movement analysis facility for the international space station. Acta Astronautica, 54, 723–735.
  • Flash, T., & Hogan, N. (1985). The coordination of arm movements: An experimentally confirmed mathematical model. The Journal of Neuroscience, 5, 1688–1703.
  • Garg, D., & Kumar, M. (2002). Optimization techniques applied to multiple manipulators for path planning and torque minimization. Engineering Applications of Artificial Intelligence, 15, 241–252.
  • Gordon, K. E., Ferris, D. P., & Kuo, A. D. (2009). Metabolic and mechanical energy costs of reducing vertical center of mass movement during gait. Archives of Physical Medicine and Rehabilitation, 90, 136–144.
  • Guigon, E., Baraduc, P., & Desmurget, M. (2007). Computational motor control: Redundancy and invariance. Journal of Neurophysiology, 97, 331–347.
  • Hayashibe, M., & Shimoda, S. (2014). Synergetic motor control paradigm for optimizing energy efficiency of multijoint reaching via tacit learning. Frontiers in Computational Neuroscience, 8, 21.
  • Jax, S. A., Rosenbaum, D. A., Vaughan, J., & Meulenbroek, R. G. J. (2003). Computational motor control and human factors: Modeling movements in real and possible environments. Human Factors, 45, 5–27.
  • Jeannerod, M. (2006). Motor cognition: What actions tell the self. Oxford, United Kingdom: Oxford University Press.
  • Khatib, O., Demircan, E., Sapio, V. D., Sentis, L., Besier, T., & Delp, S. (2009). Robotics-based synthesis of human motion. Journal of Physiology—Paris, 103, 211–219.
  • Koppelmans, V., Erdeniz, B., Dios, Y. E. D., Wood, S. J., Reuter-Lorenz, P. A., Kofman, I., … Seidler, R. D. (2013). Study protocol to examine the effects of spaceflight and a spaceflight analog on neurocognitive performance: Extent, longevity, and neural bases. BMC Neurology, 13, 205.
  • Kozlovskaya, I., Sayenko, I., Sayenko, D., Miller, T., Khusnutdinova, D., & Melnik, K. (2007). Role of support afferentation in control of the tonic muscle activity. Acta Astronautica, 60, 285–294.
  • Massion, J., Popov, K., Fabre, J. C., Rage, P., & Gurfinkel, V. (1997). Is the erect posture in microgravity based on the control of trunk orientation or center of mass position? Experimental Brain Research, 114, 384–389.
  • McIntyre, J., Zago, M., Berthoz, A., & Lacquaniti, F. (2001). Does the brain model Newton's laws? Nature Neuroscience, 4, 693–694.
  • McKay, J. L., & Ting, L. H. (2012). Optimization of muscle activity for task-level goals predicts complex changes in limb forces across biomechanical contexts. PLoS Computational Biology, 8, e1002465.
  • Mechtcheriakov, S., Berger, M., Molokanova, E., Holzmueller, G., Wirtenberger, W., Lechner-Steinleitner, S., … Gerstenbrand, F. (2002). Slowing of human arm movements during weightlessness: The role of vision. European Journal of Applied Physiology, 87, 576–583.
  • Milner, T. E., & Franklin, D. W. (2005). Impedance control and internal model use during the initial stage of adaptation to novel dynamics in humans. The Journal of Physiology, 567(Pt 2), 651–664.
  • Mouchnino, L., Cincera, M., Fabre, J. C., Assaiante, C., Amblard, B., Pedotti, A., & Massion, J. (1996). Is the regulation of the center of mass maintained during leg movement under microgravity conditions? Journal of Neurophysiology, 76, 1212–1223.
  • Papaxanthis, C., Pozzo, T., & McIntyre, J. (2005). Kinematic and dynamic processes for the control of pointing movements in humans revealed by short-term exposure to microgravity. Neuroscience, 135, 371–383.
  • Pedrocchi, A., Baroni, G., Mouchnino, L., Ferrigno, G., Pedotti, A., & Massion, J. (2002). Absence of center of mass control for leg abduction in long-term weightlessness in humans. Neuroscience Letters, 319, 172–176.
  • Pedrocchi, A., Baroni, G., Pedotti, A., Massion, J., & Ferrigno, G. (2005). Inverse dynamic investigation of voluntary leg lateral movements in weightlessness: A new microgravity-specific strategy. Journal of Biomechanics, 38, 769–777.
  • Pedrocchi, A., Pedotti, A., Baroni, G., Massion, J., & Ferrigno, G. (2003). Inverse dynamic investigation of voluntary trunk movements in weightlessness: A new microgravity-specific strategy. Journal of Biomechanics, 36, 1691–1700.
  • Robert, G., Blouin, J., Ruget, H., & Mouchnino, L. (2007). Coordination between postural and movement controls: Effect of changes in body mass distribution on postural and focal component characteristics. Experimental Brain Research, 181, 159–171.
  • Sabes, P. (2000). The planning and control of reaching movements. Current Opinion in Neurobiology, 10, 740–746.
  • Schaal, S., Mohajerian, P., & Ijspeert, A. (2007). Dynamics systems vs. optimal control a unifying view. Progress in Brain Research, 165, 425–445.
  • Scott, S. H. (2004). Optimal feedback control and the neural basis of volitional motor control. Nature Reviews Neuroscience, 5, 532–546.
  • Sha, D. H., Patton, J. L., & Mussa-Ivaldi, F. (2006). Minimum-jerk reaching movements of human arm under mechanical constraint. International Journal of Computer System & Signal, 7, 41–50.
  • Sha, D. H., & Thomas, J. S. (2013). An optimisation-based model for full-body upright reaching movements. Computer Methods in Biomechanics and Biomedical Engineering, 18, 847–860.
  • Shelhamer, M., & Joiner, W. M. (2003). Saccades exhibit abrupt transition between reactive and predictive, predictive saccade sequences have long-term correlations. Journal of Neurophysiology, 90, 2763–2769.
  • Sternad, D., Dean, W. J., & Newell, K. M. (2000). Force and timing variability in rhythmic unimanual tapping. Journal of Motor Behavior, 32, 249–267.
  • Stevenson, I. H., Fernandes, H. L., Vilares, I., Wei, K., & Körding, K. P. (2009). Bayesian integration and non-linear feedback control in a full-body motor task. PLoS Computational Biology, 5, e1000629.
  • Tagliabue, M., Ferrigno, G., & Horak, F. (2009). Effects of Parkinson's disease on proprioceptive control of posture and reaching while standing. Neuroscience, 158, 1206–1214.
  • Tagliabue, M., & McIntyre, J. (2011). Necessity is the mother of invention: Reconstructing missing sensory information in multiple, concurrent reference frames for eye-hand coordination. Journal of Neurophysiology, 31, 1397–1409.
  • Tagliabue, M., Pedrocchi, A., Pozzo, T., & Ferrigno, G. (2008). A mathematical tool to generate complex whole body motor tasks and test hypotheses on underlying motor planning. Medical & Biological Engineering & Computing, 46, 11–22.
  • Taniai, Y., & Nishii, J. (2008). Optimality of reaching movements based on energetic cost under the influence of signal-dependent noise. Lecture Notes in Computer Science, 4984, 1091–1099.
  • Ting, L. H., & Macpherson, J. M. (2004). Ratio of shear to load ground-reaction force may underlie the directional tuning of the automatic postural response to rotation and translation. Journal of Neurophysiology, 92(2), 808–823.
  • Todorov, E., & Jordan, M. I. (2002). Optimal feedback control as a theory of motor coordination. Nature Neuroscience, 5, 1226–1235.
  • De Sapio, V., Khatib, O., & Delp, S. (2006). Task-level approaches for the control of constrained multibody systems. Multibody System Dynamics, 16, 73–102.
  • Wada, Y., Kaneko, Y., Nakano, E., Osu, R., & Kawato, M. (2001). Quantitative examinations for multi joint arm trajectory planning–using a robust calculation algorithm of the minimum commanded torque change trajectory. Neural Network, 14, 381–393.
  • Winter, D. (1990). Biomechanics and motor control of human movements. New York, NY: Wiley.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.