240
Views
12
CrossRef citations to date
0
Altmetric
Research Article

Cortical Networks for Correcting Errors in Sensorimotor Synchronization Depend on the Direction of Asynchrony

, &
Pages 235-248 | Received 06 Oct 2016, Accepted 19 Feb 2017, Published online: 16 Aug 2017

REFERENCES

  • Alexander, G. E., DeLong, M. R., & Strick, P. L. (1986). Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annual Review of Neuroscience, 9, 357–381. http://doi.org/10.1146/annurev.ne.09.030186.002041
  • Aschersleben, G. (2002). Temporal control of movements in sensorimotor synchronization. Brain and Cognition, 48, 66–79. http://doi.org/10.1006/brcg.2001.1304
  • Baumann, S., Koeneke, S., Schmidt, C. F., Meyer, M., Lutz, K., & Jäncke, L. (2007). A network for audio–motor coordination in skilled pianists and non-musicians. Brain Research, 1161, 65–78. http://doi.org/10.1016/j.brainres.2007.05.045
  • Bavassi, L., Kamienkowski, J. E., Sigman, M., & Laje, R. (2017). Sensorimotor synchronization: neurophysiological markers of the asynchrony in a finger-tapping task. Psychological Research, 81, 143–156. http://doi.org/10.1007/s00426-015-0721-6
  • Bavassi, M. L., Tagliazucchi, E., & Laje, R. (2013). Small perturbations in a finger-tapping task reveal inherent nonlinearities of the underlying error correction mechanism. Human Movement Science, 32, 21–47. http://doi.org/10.1016/j.humov.2012.06.002
  • Bijsterbosch, J. D., Lee, K. H., Dyson-Sutton, W., Barker, A. T., & Woodruff, P. W. R. (2011). Continuous theta burst stimulation over the left pre-motor cortex affects sensorimotor timing accuracy and supraliminal error correction. Brain Research, 1410, 101–111. http://doi.org/10.1016/j.brainres.2011.06.062
  • Bijsterbosch, J. D., Lee, K. H., Hunter, M. D., Tsoi, D. T., Lankappa, S., Wilkinson, I. D., … Wooodruff, P. W. (2011). The role of the cerebellum in sub- and supraliminal error correction during sensorimotor synchronization: Evidence from fMRI and TMS. Journal of Cognitive Neuroscience, 23, 1100–1112. http://doi.org/10.1162/jocn.2010.21506
  • Bressler, S. L., & Menon, V. (2010). Large-scale brain networks in cognition: Emerging methods and principles. Trends in Cognitive Sciences, 14, 277–290. http://doi.org/10.1016/j.tics.2010.04.004
  • Cassim, F., Monaca, C., Szurhaj, W., Bourriez, J. L., Defebvre, L., Derambure, P., & Guieu, J. D. (2001). Does post-movement beta synchronization reflect an idling motor cortex? NeuroReport, 12, 3859–3863. http://doi.org/10.1097/00001756-200112040-00051
  • Cavanagh, J. F., Cohen, M. X., & Allen, J. J. B. (2009). Prelude to and resolution of an error: EEG phase synchrony reveals cognitive control dynamics during action monitoring. Journal of Neuroscience, 29, 98–105. http://doi.org/10.1523/JNEUROSCI.4137-08.2009
  • Cavanagh, J. F., & Frank, M. J. (2014). Frontal theta as a mechanism for cognitive control. Trends in Cognitive Sciences, 18, 414–421. http://doi.org/10.1016/j.tics.2014.04.012
  • Cavanagh, J. F., Frank, M. J., Klein, T. J., & Allen, J. J. B. (2010). Frontal theta links prediction errors to behavioral adaptation in reinforcement learning. NeuroImage, 49, 3198–3209. http://doi.org/10.1016/j.neuroimage.2009.11.080
  • Chen, R., Tam, A., Bütefisch, C., Corwell, B., Ziemann, U., Rothwell, J. C., & Cohen, L. G. (1998). Intracortical inhibition and facilitation in different representations of the human motor cortex. Journal of Neurophysiology, 80, 2870–2881.
  • Coull, J. T., Cheng, R. K., & Meck, W. H. (2011). Neuroanatomical and neurochemical substrates of timing. Neuropsychopharmacology, 36, 3–25. http://doi.org/10.1038/npp.2010.113
  • Coxon, J. P., stinear, C. M., & Byblow, W. D. (2006). Intracortical inhibition during volitional inhibition of prepared action. Journal of Neurophysiology, 95, 3371–3383. http://doi.org/10.1152/jn.01334.2005
  • Dale, A. M., Liu, A. K., Fischl, B. R., Buckner, R. L., & Belliveau, J. W. (2000). Dynamic statistical parametric mapping: Combining fMRI and MEG for high-resolution imaging of cortical activity. Neuron, 26, 55–67. http://doi.org/10.1016/S0896-6273(00)81138-1
  • Delorme, A., & Makeig, S. (2004). EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134, 9–21. http://doi.org/10.1016/j.jneumeth.2003.10.009
  • Ehrsson, H. H., Kuhtz-Buschbeck, J. P., & Forssberg, H. (2002). Brain regions controlling nonsynergistic versus synergistic movement of the digits: A functional magnetic resonance imaging study. Journal of Neuroscience, 22, 5074–5080.
  • Engel, A. K., & Fries, P. (2010). Beta-band oscillations– Signalling the status quo? Current Opinion in Neurobiology, 20, 156–165. http://doi.org/10.1016/j.conb.2010.02.015
  • Gerloff, C., Richard, J., Hadley, J., Schulman, A. E., Honda, M., & Hallett, M. (1998). Functional coupling and regional activation of human cortical motor areas during simple, internally paced and externally paced finger movements. Brain, 121, 1513–1531.
  • Gross, J., Pollok, B., Dirks, M., Timmermann, L., Butz, M., & Schnitzler, A. (2005). Task-dependent oscillations during unimanual and bimanual movements in the human primary motor cortex and SMA studied with magnetoencephalography. NeuroImage, 26, 91–98. http://doi.org/10.1016/j.neuroimage.2005.01.025
  • Hämäläinen, M. S., & Ilmoniemi, R. J. (1994). Interpreting magnetic fields of the brain: Minimum norm estimates. Medical & Biological Engineering & Computing, 32, 35–42.
  • Jang, J., Jones, M., Milne, E., Wilson, D., & Lee, K. H. (2016). Contingent negative variation (CNV) associated with sensorimotor timing error correction. NeuroImage, 127, 58–66. http://doi.org/10.1016/j.neuroimage.2015.11.071
  • Jantzen, K. J., & Kelso, J. (2007). Neural coordination dynamics of human sensorimotor behavior: A review. In V. K. Jirsa & A. R. McIntosh (Eds.), Handbook of brain connectivity (pp. 421–461). Berlin, Germany: Springer. http://doi.org/10.1007/978-3-540-71512-2_15
  • Jantzen, K. J., Oullier, O., Marshall, M., Steinberg, F. L., & Kelso, J. A. S. (2007). A parametric fMRI investigation of context effects in sensorimotor timing and coordination. Neuropsychologia, 45, 673–684. http://doi.org/10.1016/j.neuropsychologia.2006.07.020
  • Jantzen, K. J., Steinberg, F. L., & Kelso, J. A. S. (2009). Coordination dynamics of large-scale neural circuitry underlying rhythmic sensorimotor behavior. Journal of Cognitive Neuroscience, 21, 2420–2433. http://doi.org/10.1162/jocn.2008.21182
  • Jantzen, K. J., Steinberg, F. L., Kelso, J. A. S., & Graybiel, A. M. (2004). Brain networks underlying human timing behavior are influenced by prior context. Proceedings of the National Academy of Sciences of the United States of America, 101, 6815–6820.
  • Jurkiewicz, M. T., Gaetz, W. C., Bostan, A. C., & Cheyne, D. (2006). Post-movement beta rebound is generated in motor cortex: Evidence from neuromagnetic recordings. NeuroImage, 32, 1281–1289. http://doi.org/10.1016/j.neuroimage.2006.06.005
  • Lachaux, J. P., Rodriguez, E., Martinerie, J., & Varela, F. J. (1999). Measuring phase synchrony in brain signals. Human Brain Mapping, 8, 194–208.
  • Leocani, L., Toro, C., Zhuang, P., Gerloff, C., & Hallett, M. (2001). Event-related desynchronization in reaction time paradigms: A comparison with event-related potentials and corticospinal excitability. Clinical Neurophysiology, 112, 923–930. http://doi.org/10.1016/S1388-2457(01)00530-2
  • Luppino, G., Matelli, M., Camarda, R., & Rizzolatti, G. (1993). Corticocortical connections of area F3 (SMA-proper) and area F6 (pre-SMA) in the macaque monkey. Journal of Comparative Neurology, 338, 114–140. http://doi.org/10.1002/cne.903380109
  • Luu, P., Tucker, D. M., & Makeig, S. (2004). Frontal midline theta and the error-related negativity: neurophysiological mechanisms of action regulation. Clinical Neurophysiology, 115, 1821–1835. http://doi.org/10.1016/j.clinph.2004.03.031
  • Maris, E., & Oostenveld, R. (2007). Nonparametric statistical testing of EEG- and MEG-data. Journal of Neuroscience Methods, 164, 177–190. http://doi.org/10.1016/j.jneumeth.2007.03.024
  • Matelli, M., & Luppino, G. (1996). Thalamic input to mesial and superior area 6 in the macaque monkey. The Journal of Comparative Neurology, 372, 59–87. http://doi.org/10.1002/(SICI)1096-9861(19960812)372:1<59::AID-CNE6>3.0.CO;2-L
  • Mayville, J. M., Jantzen, K. J., Fuchs, A., Steinberg, F. L., & Kelso, J. A. S. (2002). Cortical and subcortical networks underlying syncopated and synchronized coordination revealed using fMRI. Human Brain Mapping, 17, 214–229. http://doi.org/10.1002/hbm.10065
  • Narayanan, N. S., Cavanagh, J. F., Frank, M. J., & Laubach, M. (2013). Common medial frontal mechanisms of adaptive control in humans and rodents. Nature Publishing Group, 16, 1888–1895. http://doi.org/10.1038/nn.3549
  • Nigbur, R., Cohen, M. X., Ridderinkhof, K. R., & Stürmer, B. (2012). Theta dynamics reveal domain-specific control over stimulus and response conflict. Journal of Cognitive Neuroscience, 24, 1264–1274. http://doi.org/10.1162/jocn_a_00128
  • Obeso, I. (2013). Dissociating the role of the pre-SMA in response inhibition and switching: A combined online and offline TMS approach. Frontiers in Human Neuroscience, 7, 150. http://doi.org/10.3389/fnhum.2013.00150
  • Ohara, S., Mima, T., Baba, K., Ikeda, A., Kunieda, T., Matsumoto, R., et al. (2001). Increased synchronization of cortical oscillatory activities between human supplementary motor and primary sensorimotor areas during voluntary movements. Journal of Neuroscience, 21, 9377–9386.
  • Oostenveld, R., & Praamstra, P. (2001). The five percent electrode system for high-resolution EEG and ERP measurements. Clinical Neurophysiology, 112, 713–719. http://doi.org/10.1016/S1388-2457(00)00527-7
  • Oullier, O. (2004). Neural substrates of real and imagined sensorimotor coordination. Cerebral Cortex, 15, 975–985. http://doi.org/10.1093/cercor/bhh198
  • Padrão, G., Penhune, V., de Diego-Balaguer, R., Marco-Pallares, J., & Rodriguez-Fornells, A. (2014). ERP evidence of adaptive changes in error processing and attentional control during rhythm synchronization learning. NeuroImage, 100(C), 460–470. http://doi.org/10.1016/j.neuroimage.2014.06.034
  • Pecenka, N. (2013). Neural correlates of auditory temporal predictions during sensorimotor synchronization. Frontiers in Human Neuroscience, 7, 380. http://doi.org/10.3389/fnhum.2013.00380/
  • Pfurtscheller, G., Neuper, C., Brunner, C., & da Silva, F. L. (2005). Beta rebound after different types of motor imagery in man. Neuroscience Letters, 378, 156–159. http://doi.org/10.1016/j.neulet.2004.12.034
  • Pfurtscheller, G., Stancak, A., & Neuper, C. (1996). Post-movement beta synchronization. A correlate of an idling motor area? Electroencephalography and Clinical Neurophysiology, 98, 281–293.
  • Picard, N., & Strick, P. L. (1996). Motor areas of the medial wall: A review of their location and functional activation. Cerebral Cortex, 6, 342–353.
  • Pollok, B., Gross, J., Müller, K., Aschersleben, G., & Schnitzler, A. (2005). The cerebral oscillatory network associated with auditorily paced finger movements. NeuroImage, 24, 646–655. http://doi.org/10.1016/j.neuroimage.2004.10.009
  • Praamstra, P., Turgeon, M., Hesse, C. W., Wing, A. M., & Perryer, L. (2003). Neurophysiological correlates of error correction in sensorimotor-synchronization. NeuroImage, 20, 1283–1297. http://doi.org/10.1016/S1053-8119(03)00351-3
  • Repp, B. H. (2005). Sensorimotor synchronization: A review of the tapping literature. Psychonomic Bulletin & Review, 12, 969–992.
  • Repp, B. H. (2011). Tapping in synchrony with a perturbed metronome: The phase correction response to small and large phase shifts as a function of tempo. Journal of Motor Behavior, 43, 213–227. http://doi.org/10.1080/00222895.2011.561377
  • Repp, B. H., & Su, Y. H. (2013a). Sensorimotor synchronization: A review of recent research (2006–2012). Psychonomic Bulletin & Review, 20, 403–452. http://doi.org/10.3758/s13423-012-0371-2
  • Repp, B. H., & Su, Y. H. (2013b). Sensorimotor synchronization: A review of recent research (2006–2012). Psychonomic Bulletin & Review, 20, 403–452. http://doi.org/10.3758/s13423-012-0371-2
  • Salmelin, R., Hämäläinen, M., Kajola, M., & Hari, R. (1995). Functional segregation of movement-related rhythmic activity in the human brain. NeuroImage, 2, 237–243.
  • Schwartze, M., Keller, P. E., Patel, A. D., & Kotz, S. A. (2011). The impact of basal ganglia lesions on sensorimotor synchronization, spontaneous motor tempo, and the detection of tempo changes. Behavioural Brain Research, 216, 685–691. http://doi.org/10.1016/j.bbr.2010.09.015
  • Shadmehr, R., Smith, M. A., & Krakauer, J. W. (2010). Error correction, sensory prediction, and adaptation in motor control. Annual Review of Neuroscience, 33, 89–108. http://doi.org/10.1146/annurev-neuro-060909-153135
  • Siegel, M., Donner, T. H., & Engel, A. K. (2012). Spectral fingerprints of large-scale neuronal interactions. Nature Reviews Neuroscience, 13, 121–134. http://doi.org/10.1038/nrn3137
  • Simmonds, D. J., Pekar, J. J., & Mostofsky, S. H. (2008). Meta-analysis of Go/No-go tasks demonstrating that fMRI activation associated with response inhibition is task-dependent. Neuropsychologia, 46, 224–232. http://doi.org/10.1016/j.neuropsychologia.2007.07.015
  • Tadel, F., Baillet, S., Mosher, J. C., Pantazis, D., & Leahy, R. M. (2011). Brainstorm: A user-friendly application for MEG/EEG analysis. Computational Intelligence and Neuroscience, 2011, 8. http://doi.org/10.1155/2011/879716
  • Thaut, M. H., & Kenyon, G. P. (2003). Rapid motor adaptations to subliminal frequency shifts during syncopated rhythmic sensorimotor synchronization. Human Movement Science, 22(3), 321–338. http://doi.org/10.1016/S0167-9457(03)00048-4
  • van de Vijver, I., Ridderinkhof, K. R., & Cohen, M. X. (2011). Frontal oscillatory dynamics predict feedback learning and action adjustment. Journal of Cognitive Neuroscience, 23, 4106–4121. http://doi.org/10.1162/jocn_a_00110
  • Verbruggen, F., Aron, A. R., Stevens, M. A., & Chambers, C. D. (2010). Theta burst stimulation dissociates attention and action updating in human inferior frontal cortex. Proceedings of the National Academy of Sciences of the United States of America, 107, 13966–13971. http://doi.org/10.1073/pnas.1001957107/-/DCSupplemental
  • Verbruggen, F., & Logan, G. D. (2008). Response inhibition in the stop-signal paradigm. Trends in Cognitive Sciences, 12, 418–424. http://doi.org/10.1016/j.tics.2008.07.005
  • Wardak, C. (2011). The role of the supplementary motor area in inhibitory control in monkeys and humans. The Journal of Neuroscience, 31, 5181–5183. http://doi.org/10.1523/JNEUROSCI.0006-11.2011

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.