261
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Modular Organization of Exploratory Force Development Under Isometric Conditions in the Human Arm

, &
Pages 83-99 | Received 19 Mar 2017, Accepted 15 Dec 2017, Published online: 31 Jan 2018

REFERENCES

  • Aagaard, P., Simonsen, E. B., Andersen, J. L., Magnusson, P., & Dyhre-Poulsen, P. (2002). Increased rate of force development and neural drive of human skeletal muscle following resistance training. Journal of Applied Physiology, 93(4), 1318–1326. doi:10.1152/japplphysiol.00283.2002.
  • Ajiboye, A. B., & Weir, R. F. (2009). Muscle synergies as a predictive framework for the EMG patterns of new hand postures. Journal of Neural Engineering, 6(3). doi:10.1088/1741-2560/6/3/036004.
  • Baweja, H. S., Patel, B. K., Martinkewiz, J. D., Vu, J., & Christou, E. A. (2009). Removal of visual feedback alters muscle activity and reduces force variability during constant isometric contractions. Experimental Brain Research, 197, 35–47. doi:10.1007/s00221-009-1883-5.
  • Berger DJ, & d'Avella A. (2014). Effective force control by muscle synergies. Frontiers in Computational Neuroscience, 8, 46. doi:10.3389/fncom.2014.00046.
  • Bernstein, N. (1967). The co-ordination and regulation of movements. Oxford: Pergamon.
  • Borzelli, D., Berger, D. J., Pai, D. K., & d'Avella, A. (2013). Effort minimization and synergistic muscle recruitment for three-dimensional force generation. Frontiers in Computational Neuroscience, 7, 186. doi:10.3389/fncom.2013.00186.
  • Cheung, V. C. K., d'Avella, A., Tresch, M. C., & Bizzi, E. (2005). Central and sensory contributions to the activation and organization of muscle synergies during natural motor behaviors. Journal of Neuroscience, 25, 6419–6434. doi:10.1523/JNEUROSCI.4904-04.2005.
  • Cheung, V. C. K., Piron, L., Agostini, M., Silvoni, S., Turolla, A., & Bizzi, E. (2009). Stability of muscle synergies for voluntary actions after cortical stroke in humans. Proceedings of the National Academy of Sciences of the United States of America, 106, 19563–19568. doi:10.1073/pnas.0910114106.
  • Cheung, V. C. K., Turolla, A., Agostini, M., Silvoni, S., Bennis, C., Kasi, P., … Bizzi, E. (2012). Muscle synergy patterns as physiological markers of motor cortical damage. Proceedings of the National Academy of Sciences of the United States of America, 109, 14652–14656. doi:10.1073/pnas.1212056109.
  • Clark, D. J., Ting, L. H., Zajac, F. E., Neptune, R. R., & Kautz, S. A. (2010). Merging of healthy motor modules predicts reduced locomotor performance and muscle coordination complexity post-stroke. Journal of Neurophysiology, 103, 844–857. doi:10.1152/jn.00825.2009.
  • d'Avella, A., Saltiel, P., & Bizzi, E. (2003). Combinations of muscle synergies in the construction of a natural motor behavior. Nature Neuroscience, 6(3), 300–308. doi:10.1038/Nn1010.
  • d'Avella, A., Fernandez, L., Portone, A., & Lacquaniti, F. (2008). Modulation of phasic and tonic muscle synergies with reaching direction and speed. Journal of Neurophysiology, 100, 1433–1454. doi:10.1152/jn.01377.2007.
  • d'Avella, A., & Lacquaniti, F. (2013). Control of reaching movements by muscle synergy combinations. Frontiers in Computational Neuroscience, 7, 42. doi:10.3389/fncom.2013.00042.
  • d'Avella, A., Portone, A., Fernandez, L., & Lacquaniti, F. (2006). Control of fast-reaching movements by muscle synergy combinations. Journal of Neuroscience, 26, 7791–7810. doi:10.1523/JNEUROSCI.0830-06.2006.
  • d'Avella, A., Portone, A, & Lacquaniti, F. (2011). Superposition and modulation of muscle synergies for reaching in response to a change in target location. Journal of Neurophysiology, 106, 2796–2812. doi:10.1152/jn.00675.2010.
  • De Groote, F., Jonkers, I., & Duysens, J. (2014). Task constraints and minimization of muscle effort result in a small number of muscle synergies during gait. Frontiers in Computational Neuroscience, 8, 115. doi:10.3389/fncom.2014.00115.
  • Doeringer, J. A., & Hogan, N. (1998). Intermittency in preplanned elbow movements persists in the absence of visual feedback. Journal of Neurophysiology, 80, 1787–1799. doi:10.1152/jn.1998.80.4.1787.
  • Dominici, N., Ivanenko, Y. P., Cappellini, G., d'Avella, A., Mondi, V., Cicchese, M., … Lacquaniti, F. (2011). Locomotor primitives in newborn babies and their development. Science, 334, 997–999. doi:10.1126/science.1210617.
  • Emken, J. L., Benitez, R., Sideris, A., Bobrow, J. E., & Reinkensmeyer, D. J. (2007). Motor adaptation as a greedy optimization of error and effort. Journal of Neurophysiology, 97, 3997–4006. doi:10.1152/jn.01095.2006.
  • Gawthrop, P., Loram, I., Lakie, M., & Gollee, H. (2011). Intermittent control: A computational theory of human control. Biological Cybernetics, 104, 31–51. doi:10.1007/s00422-010-0416-4.
  • Hart, C. B., & Giszter, S. F. (2004). Modular premotor drives and unit bursts as primitives for frog motor behaviors. Journal of Neuroscience, 24, 5269–5282. doi:10.1523/JNEUROSCI.5626-03.2004.
  • Hermens, H., Freriks, B., Merletti, R., Stegeman, D., Blok, J., Rau, G., … Hagg, G. (1999). European recommendations for surface electromyography, results of the SENIAM Project. Netherlands: Roessingh Research and Development.
  • Holzbaur, K. R. S., Murray, W. M., & Delp, S. L. (2005). A model of the upper extremity for simulating musculoskeletal surgery and analyzing neuromuscular control. Annals of Biomedical Engineering, 33, 829–840. doi:10.1007/s10439-005-3320-7.
  • Inouye, J. M., & Valero-Cuevas, F. J. (2016). Muscle synergies heavily influence the neural control of arm endpoint stiffness and energy consumption. PLoS Computational Biology, 12, E1004737. doi:10.1371/journal.pcbi.1004737.
  • Kalaska, J. F., Scott, S. H., Cisek, P., & Sergio, L. E. (1997). Cortical control of reaching movements. Current Opinion in Neurobiology, 7, 849–859. doi:10.1016/S0959-4388(97)80146-8.
  • Kutch, J. J., Kuo, A. D., Bloch, A. M., & Rymer, W. Z. (2008). Endpoint force fluctuations reveal flexible rather than synergistic patterns of muscle cooperation. Journal of Neurophysiology, 100, 2455–2471. doi:10.1152/jn.90274.2008.
  • Kutch, J. J., & Valero-Cuevas F. J. (2012). Challenges and new approaches to proving the existence of muscle synergies of neural origin. PLOS Computational Biology, 8, e1002434. doi:10.1371/journal.pcbi.1002434.
  • Lee, D. D., & Seung, H. S. (2001). Algorithms for non-negative matrix factorization. In Todd. K. Leen, Thomas G. Dietterich, & Volker Tresp (Eds.), Advances in neural information processing systems 13 (pp. 556–562).
  • Lee, D. D., & Seung, H. S. (1999). Learning the parts of objects by non-negative matrix factorization. Nature, 401, 788–791. doi:10.1038/44565.
  • Lee, S. W., Triandafilou, K., Lock, B. A., & Kamper, D. G. (2013). Impairment in task-specific modulation of muscle coordination correlates with the severity of hand impairment following stroke. Plos One, 8(7), e68745. doi:10.1371/journal.pone.0068745.
  • Lee, W. A. (1984). Neuromotor synergies as a basis for coordinated intentional action. Journal of Motor Behavior, 16: 135–170. doi:10.1080/00222895.1984.10735316.
  • Loram, I. D., & Lakie, M. (2002). Human balancing of an inverted pendulum: Position control by small, ballistic-like, throw and catch movements. The Journal of Physiology, 540, 1111–1124. doi:10.1113/jphysiol.2001.013077.
  • Macpherson, J. M., Rushmer, D. S., & Dunbar, D. C. (1986). Postural responses in the cat to unexpected rotations of the supporting surface – evidence for a centrally generated synergic organization. Experimental Brain Research, 62, 152–160. doi:10.1007/BF00237411.
  • Maier, M. A., & Heppreymond, M. C. (1995). EMG activation patterns during force production in precision grip. 2. Muscular synergies in the spatial and temporal domain. Experimental Brain Research, 103, 123–136. doi:10.1007/BF00241970.
  • Monaco, V., Ghionzoli, A., & Micera, S. (2010). Age-related modifications of muscle synergies and spinal cord activity during locomotion. Journal of Neurophysiology, 104, 2092–2102. doi:10.1152/jn.00525.2009.
  • Muceli, S., Boye, A. T., d'Avella, A., & Farina, D. (2010). Identifying representative synergy matrices for describing muscular activation patterns during multidirectional reaching in the horizontal plane. Journal of Neurophysiology, 103, 1532–1542. doi:10.1152/jn.00559.2009.
  • Muceli, S., Falla, D., & Farina, D. (2014). Reorganization of muscle synergies during multidirectional reaching in the horizontal plane with experimental muscle pain. Journal of Neurophysiology, 111, 1615–1630. doi:10.1152/jn.00147.2013.
  • Overduin, S. A., d'Avella, A., Roh, J., & Bizzi, E. (2008). Modulation of muscle synergy recruitment in primate grasping. Journal of Neuroscience, 28, 880–892. doi:10.1523/JNEUROSCI.2869-07.2008.
  • Perotto, A., Delagi, E., & Iazzetti, J. (1980). Anatomical guide for the electromyographer: The limbs and trunk. Springfield, IL: Charles C. Thomas.
  • Perreault, E. J., Chen, K., Trumbower, R. D., & Lewis, G. (2008). Interactions with compliant loads alter stretch reflex gains but not intermuscular coordination. Journal of Neurophysiology, 99, 2101–2113. doi:10.1152/jn.01094.2007.
  • Roh, J., Cheung, V. C. K., & Bizzi, E. (2011). Modules in the brain stem and spinal cord underlying motor behaviors. Journal of Neurophysiology, 106, 1363–1378. doi:10.1152/jn.00842.2010.
  • Roh, J., Rymer, W. Z., & Beer, R. F. (2012). Robustness of muscle synergies underlying three-dimensional force generation at the hand in healthy humans. Journal of Neurophysiology, 107, 2123–2142. doi:10.1152/jn.00173.2011.
  • Roh, J., Rymer, W. Z., & Beer, R. F. (2015). Evidence for altered upper extremity muscle synergies in chronic stroke survivors with mild and moderate impairment. Frontiers in Human Neuroscience, 9, 6. doi:10.3389/fnhum.2015.00006.
  • Roh, J., Rymer, W. Z., Perreault, E. J., Yoo, S. B., & Beer, R. F. (2013). Alterations in upper limb muscle synergy structure in chronic stroke survivors. Journal of Neurophysiology, 109, 768–781. doi:10.1152/jn.00670.2012.
  • Todorov E. (2004). Optimality principles in sensorimotor control. Nature Neuroscience, 7, 907–915. doi:10.1038/nn1309.
  • Todorov, E., & Jordan, M. I. (2002). Optimal feedback control as a theory of motor coordination. Nature Neuroscience, 5, 1226–1235. doi:10.1038/nn963.
  • Torres-Oviedo, G., Macpherson, J. M., & Ting, L. H. (2006). Muscle synergy organization is robust across a variety of postural perturbations. Journal of Neurophysiology, 96, 1530–1546. doi:10.1152/jn.00810.2005.
  • Torres-Oviedo, G., & Ting, L. H. (2007). Muscle synergies characterizing human postural responses. Journal of Neurophysiology, 98, 2144–2156. doi:10.1152/jn.01360.2006.
  • Tresch, M. C., Cheung, V. C. K., & d'Avella, A. (2006). Matrix factorization algorithms for the identification of muscle synergies: Evaluation on simulated and experimental data sets. Journal of Neurophysiology, 95, 2199–2212. doi:10.1152/jn.00222.2005.
  • Tresch, M. C., & Jarc, A. (2009). The case for and against muscle synergies. Current Opinion in Neurobiology, 19, 601–607. doi:10.1016/j.conb.2009.09.002.
  • Tresch, M. C., Saltiel, P., & Bizzi, E. (1999). The construction of movement by the spinal cord. Nature Neuroscience, 2, 162–167. doi:10.1038/5721.
  • Valero-Cuevas, F. J. (2000). Predictive modulation of muscle coordination pattern magnitude scales fingertip force magnitude over the voluntary range. Journal of Neurophysiology, 83, 1469–1479. doi:10.1152/jn.2000.83.3.1469.
  • Valero-Cuevas, F. J., Venkadesan, M., & Todorov, E. (2009). Structured variability of muscle activations supports the minimal intervention principle of motor control. Journal of Neurophysiology, 102, 59–68. doi:10.1152/jn.90324.2008.
  • Wolpert, D. M., & Ghahramani, Z. (2000). Computational principles of movement neuroscience. Nature Neuroscience, 3 Suppl, 1212–1217, doi:10.1038/81497.
  • Zar, J. (1999). Biostatistical analysis. Upper Saddle River, NJ: Prentice-Hall.
  • Zhou, P., & Kuiken, T. A. (2006). Eliminating cardiac contamination from myoelectric control signals developed by targeted muscle reinnervation. Physiological Measurement, 27, 1311–1327. doi:10.1088/0967-3334/27/12/005.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.