189
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Planned Straight or Biased to Be So? The Influence of Visual Feedback on Reaching Movements

, ORCID Icon &
Pages 236-248 | Received 07 Nov 2018, Accepted 29 Mar 2019, Published online: 20 May 2019

References

  • Ahmed, A. A., Wolpert, D. M., & Flanagan, J. R. (2008). Flexible representations of dynamics are used in object manipulation. Current Biology, 18 (10), 763–768. doi:10.1016/j.cub.2008.04.061
  • Alexander, R. M. (1997). A minimum energy cost hypothesis for human arm trajectories. Biological Cybernetics, 76 (2), 97–105. doi: 10.1007/s004220050324
  • Berniker, M., Franklin, D. W., Flanagan, J. R., Wolpert, D. M., & Kording, K. P. (2014). Motor learning of novel dynamics is not represented in a single global coordinate system: Evaluation of mixed coordinate representations and local learning. Journal of Neurophysiology, 111 (6), 1165–1182. doi:10.1152/jn.00493.2013
  • Berniker, M., Mirzaei, H., & Kording, K. P. (2014). The effects of training breadth on motor generalization. Journal of Neurophysiology, 112 (11), 2791–2798. doi:10.1152/jn.00615.2013
  • Danziger, Z., & Mussa-Ivaldi, F. A. (2012). The influence of visual motion on motor learning. Journal of Neuroscience, 32 (29), 9859–9869. doi:10.1523/JNEUROSCI.5528-11.2012
  • Diedrichsen, J., White, O., Newman, D., & Lally, N. (2010). Use-dependent and error-based learning of motor behaviors. The Journal of Neuroscience, 30 (15), 5159–5166. doi:10.1523/JNEUROSCI.5406-09.2010
  • Dizio, P., & Lackner, J. R. (1995). Motor adaptation to Coriolis force perturbations of reaching movements: Endpoint but not trajectory adaptation transfers to the nonexposed arm. Journal of Neurophysiology, 74 (4), 1787–1792. doi: 10.1152/jn.1995.74.4.1787
  • Farshchiansadegh, A., Melendez-Calderon, A., Ranganathan, R., Murphey, T. D., & Mussa-Ivaldi, F. A. (2016). Sensory agreement guides kinetic energy optimization of arm movements during object manipulation. PLoS Computational Biology, 12 (4), e1004861. doi:10.1371/journal.pcbi.1004861
  • Flanagan, J. R., & Rao, A. K. (1995). Trajectory adaptation to a nonlinear visuomotor transformation: Evidence of motion planning in visually perceived space. Journal of Neurophysiology, 74 (5), 2174–2178. doi: 10.1152/jn.1995.74.5.2174
  • Flash, T., & Hogan, N. (1985). The coordination of arm movements: An experimentally confirmed mathematical model. The Journal of Neuroscience, 5 (7), 1688–1703. doi:10.1523/JNEUROSCI.05-07-01688.1985
  • Hatze, H., & Buys, J. D. (1977). Energy-optimal controls in the mammalian neuromuscular system. Biological Cybernetics, 27 (1), 9–20. doi:10.1007/BF00357705
  • Hocherman, S., & Wise, S. P. (1991). Effects of hand movement path on motor cortical activity in awake, behaving rhesus monkeys. Experimental Brain Research, 83 (2), 285–302. doi:10.1007/BF00231153
  • Huang, H. J., Kram, R., & Ahmed, A. A. (2012). Reduction of metabolic cost during motor learning of arm reaching dynamics. Journal of Neuroscience, 32 (6), 2182–2190. doi:10.1523/JNEUROSCI.4003-11.2012
  • Kang, T., He, J., & Tillery, S. I. (2005). Determining natural arm configuration along a reaching trajectory. Experimental Brain Research, 167 (3), 352–361. doi:10.1007/s00221-005-0039-5
  • Kistemaker, D. A., Wong, J. D., & Gribble, P. L. (2014). The cost of moving optimally: Kinematic path selection. Journal of Neurophysiology, 112 (8), 1815–1824. doi:10.1152/jn.00291.2014
  • Kluzik, J., Diedrichsen, J., Shadmehr, R., & Bastian, A. J. (2008). Reach adaptation: What determines whether we learn an internal model of the tool or adapt the model of our arm? Journal of Neurophysiology, 100 (3), 1455–1464. doi:10.1152/jn.90334.2008
  • Krakauer, J. W., Ghilardi, M. F., & Ghez, C. (1999). Independent learning of internal models for kinematic and dynamic control of reaching. Nature Neuroscience, 2 (11), 1026–1031. doi:10.1038/14826
  • Krakauer, J. W., Pine, Z. M., Ghilardi, M. F., & Ghez, C. (2000). Learning of visuomotor transformations for vectorial planning of reaching trajectories. The Journal of Neuroscience, 20 (23), 8916–8924. doi: 10.1523/JNEUROSCI.20-23-08916.2000
  • Moll, L., & Kuypers, H. G. (1977). Premotor cortical ablations in monkeys: Contralateral changes in visually guided reaching behavior. Science, 198 (4314), 317–319. doi:10.1126/science.410103
  • Morasso, P. (1981). Spatial control of arm movements. Experimental Brain Research, 42 (2), 223–227. doi:10.1007/BF00236911
  • Nakano, E., Imamizu, H., Osu, R., Uno, Y., Gomi, H., Yoshioka, T., & Kawato, M. (1999). Quantitative examinations of internal representations for arm trajectory planning: Minimum commanded torque change model. Journal of Neurophysiology, 81 (5), 2140–2155. doi:10.1152/jn.1999.81.5.2140
  • Oldfield, R. C. (1971). The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia, 9 (1), 97–113. https://doi.org/10.1016/0028-3932(71)90067-4
  • Pearce, T. M., & Moran, D. W. (2012). Strategy-dependent encoding of planned arm movements in the dorsal premotor cortex. Science, 337 (6097), 984–988. doi:10.1126/science.1220642
  • Ramanathan, R., Eberhardt, S. P., Rahman, T., Sample, W., Seliktar, R., & Alexander, M. (2000). Analysis of arm trajectories of everyday tasks for the development of an upper-limb orthosis. IEEE Transactions on Rehabilitation Engineering, 8 (1), 60–70. doi:10.1109/86.830950
  • Rayner, J. M. (1993). On aerodynamics and the energetics of vertebrate flapping flight. Contemporary Mathematics, 141, 351–400. doi:10.1090/conm/141/1212584
  • Rosenbaum, D. A., Loukopoulos, L. D., Meulenbroek, R. G., Vaughan, J., & Engelbrecht, S. E. (1995). Planning reaches by evaluating stored postures. Psychological Review, 102 (1), 28–67. doi:10.1037/0033-295X.102.1.28
  • Sainburg, R. L., Ghez, C., & Kalakanis, D. (1999). Intersegmental dynamics are controlled by sequential anticipatory, error correction, and postural mechanisms. Journal of Neurophysiology, 81 (3), 1045–1056. doi:10.1152/jn.1999.81.3.1045
  • Selinger, J. C., O’Connor, S. M., Wong, J. D., & Donelan, J. M. (2015). Humans can continuously optimize energetic cost during walking. Current Biology, 25 (18), 2452–2456. doi:10.1016/j.cub.2015.08.016
  • Shadmehr, R., & Mussa-Ivaldi, F. A. (1994). Adaptive representation of dynamics during learning of a motor task. The Journal of Neuroscience, 14 (5 Pt 2), 3208–3224. doi:10.1523/JNEUROSCI.14-05-03208.1994
  • Uno, Y., Kawato, M., & Suzuki, R. (1989). Formation and control of optimal trajectory in human multijoint arm movement. Minimum torque-change model. Biological Cybernetics, 61 (2), 89–101. doi:10.1007/BF00204593
  • Wei, K., Yan, X., Kong, G., Yin, C., Zhang, F., Wang, Q., & Kording, K. P. (2014). Computer use changes generalization of movement learning. Current Biology, 24 (1), 82–85. doi:10.1016/j.cub.2013.11.012
  • Wolpert, D. M., Ghahramani, Z., & Jordan, M. I. (1995). Are arm trajectories planned in kinematic or dynamic coordinates? An adaptation study. Experimental Brain Research, 103 (3), 460–470. doi:10.1007/BF00241505

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.