385
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

Highs and Lows in Motor Control Development

, , , &
Pages 404-417 | Received 13 Nov 2018, Accepted 06 Jul 2019, Published online: 24 Jul 2019

REFERENCES

  • Ansuini, C., Cavallo, A., Campus, C., Quarona, D., Koul, A., & Becchio, C. (2016). Are we real when we fake? Attunement to object weight in natural and pantomimed grasping movements. Frontiers in Human Neuroscience, 10, 471. doi:10.3389/fnhum.2016.00471
  • Ansuini, C., Cavallo, A., Koul, A., Jacono, M., Yang, Y., & Becchio, C. (2015). Predicting object size from hand kinematics: A temporal perspective. PLoS One, 10(3), e0120432. doi:10.1371/journal.pone.0120432
  • Ansuini, C., Giosa, L., Turella, L., Altoè, G., & Castiello, U. (2008). An object for an action, the same object for other actions: Effects on hand shaping. Experimental Brain Research, 185(1), 111–119. doi:10.1007/s00221-007-1136-4
  • Ansuini, C., Podda, J., Battaglia, F. M., Veneselli, E., & Becchio, C. (2018). One hand, two hands, two people: Prospective sensorimotor control in children with autism. Developmental Cognitive Neuroscience, 29, 86–96. doi:10.1016/j.dcn.2017.02.009
  • Assaiante, C., Woollacott, M., & Amblard, B. (2000). Development of postural adjustment during gait initiation: Kinematic and EMG analysis. Journal of Motor Behavior, 32(3), 211–226. doi:10.1080/00222890009601373
  • Babinsky, E., Braddick, O., & Atkinson, J. (2012). The effect of removing visual information on reach control in young children. Experimental Brain Research, 222(3), 291–302. doi:10.1007/s00221-012-3216-3
  • Badan, M., Hauert, C. A., & Mounoud, P. (2000). Sequential pointing in children and adults. Journal of Experimental Child Psychology, 75(1), 43–69. doi:10.1006/jecp.1999.2522
  • Basso, D., & Finos, L. (2012). Exact multivariate permutation tests for fixed effects in mixed-models. Communications in Statistics: Theory & Methods, 41(16–17), 2991–3001. doi:10.1080/03610926.2011.627103
  • Becchio, C., Zanatto, D., Straulino, E., Cavallo, A., Sartori, G., & Castiello, U. (2014). The kinematic signature of voluntary actions. Neuropsychologia, 64, 169–175. doi:10.1016/j.neuropsychologia.2014.09.033
  • Berthier, N. E., & Carrico, R. L. (2010). Visual information and object size in infant reaching. Infant Behavior & Development, 33(4), 555–566. doi:10.1016/j.infbeh.2010.07.007
  • Blanchard, C. C. V., McGlashan, H. L., French, B., Sperring, R. J., Petrocochino, B., & Holmes, N. P. (2017). Online control of prehension predicts performance on a standardized motor assessment test in 8- to 12-year-old children. Frontiers in Psychology, 8, 374. doi:10.3389/fpsyg.2017.00374
  • Boisgontier, M. P., & Cheval, B. (2016). The ANOVA to mixed model transition. Neuroscience & Biobehavioral Reviews, 68, 1004–1005. doi:10.1016/j.neubiorev.2016.05.034
  • Brenner, E., & Smeets, J. B. (1996). Size illusion influences how we lift but not how we grasp an object. Experimental Brain Research, 111(3), 473–476. doi:10.1007/BF00228737
  • Brenner, E., & Smeets, J. B. (1997). Fast responses of the human hand to changes in target position. Journal of Motor Behavior, 29(4), 297–310. doi:10.1080/00222899709600017
  • Brouwer, A.-M., Georgiou, I., Glover, S., & Castiello, U. (2006). Adjusting reach to lift movements to sudden visible changes in target’s weight. Experimental Brain Research, 173(4), 629–636. doi:10.1007/s00221-006-0406-x
  • Buckingham, G., & Goodale, M. A. (2010). The influence of competing perceptual and motor priors in the context of the size–weight illusion. Experimental Brain Research, 205(2), 283–288. doi:10.1007/s00221-010-2353-9
  • Buckingham, G., Ranger, N. S., & Goodale, M. A. (2011). The role of vision in detecting and correcting fingertip force errors during object lifting. Journal of Vision, 11(1), 4–4. doi:10.1167/11.1.4
  • Cashaback, J. G. A., McGregor, H. R., Pun, H. C. H., Buckingham, G., & Gribble, P. L. (2017). Does the sensorimotor system minimize prediction error or select the most likely prediction during object lifting? Journal of Neurophysiology, 117(1), 260–274. doi:10.1152/jn.00609.2016
  • Castiello, U., Bennett, K. M. B., & Stelmach, G. E. (1993). Reach to grasp: The natural response to perturbation of object size. Experimental Brain Research, 94(1), 163–178. doi:10.1007/BF00230479
  • Chouinard, P. A. (2005). Role of the primary motor and dorsal premotor cortices in the anticipation of forces during object lifting. Journal of Neuroscience, 25(9), 2277–2284. doi:10.1523/JNEUROSCI.4649-04.2005
  • Cluff, T., & Scott, S. H. (2013). Rapid feedback responses correlate with reach adaptation and properties of novel upper limb loads. The Journal of Neuroscience, 33(40), 15903–15914. doi:10.1523/JNEUROSCI.0263-13.2013
  • Contreras-Vidal, J. L., Bo, J., Boudreau, J. P., & Clark, J. E. (2005). Development of visuomotor representations for hand movement in young children. Experimental Brain Research, 162(2), 155–164. doi:10.1007/s00221-004-2123-7
  • Desmurget, M., & Grafton, S. (2000). Forward modeling allows feedback control for fast reaching movements. Trends in Cognitive Sciences, 4(11), 423–431. doi:10.1016/S1364-6613(00)01537-0
  • Desmurget, M., & Grafton, S. (2003). Feedback or feedforward control: End of a dichotomy. In S. H. Johnson-Frey (Ed.), Taking action: Cognitive neuroscience perspectives on intentional acts (pp. 289–338). Cambridge: MIT Press.
  • Desmurget, M., Prablanc, C., Arzi, M., Rossetti, Y., Paulignan, Y., & Urquizar, C. (1996). Integrated control of hand transport and orientation during prehension movements. Experimental Brain Research, 110(2), 265–278. doi:10.1007/BF00228557
  • Eastough, D., & Edwards, M. G. (2006). Movement kinematics in prehension are affected by grasping objects of different mass. Experimental Brain Research, 176(1), 193–198. doi:10.1007/s00221-006-0749-3
  • Ernst, M. O., & Banks, M. S. (2002). Humans integrate visual and haptic information in a statistically optimal fashion. Nature, 415(6870), 429–433. doi:10.1038/415429a
  • Farnè, A., Roy, A. C., Paulignan, Y., Rode, G., Rossetti, Y., Boisson, D., & Jeannerod, M. (2003). Visuo-motor control of the ipsilateral hand: Evidence from right brain-damaged patients. Neuropsychologia, 41(6), 739–757. doi:10.1016/S0028-3932(02)00177-X
  • Flanagan, J. R., King, S., Wolpert, D. M., & Johansson, R. S. (2001). Sensorimotor prediction and memory in object manipulation. Canadian Journal of Experimental Psychology: Revue Canadienne De Psychologie Expérimentale, 55(2), 87–95. doi:10.1037/h0087355
  • Flash, T., & Henis, E. (1991). Arm Trajectory modifications during reaching towards visual targets. Journal of Cognitive Neuroscience, 3(3), 220–230. doi:10.1162/jocn.1991.3.3.220
  • Forssberg, H., Eliasson, A. C., Kinoshita, H., Johansson, R. S., & Westling, G. (1991). Development of human precision grip. I: Basic coordination of force. Experimental Brain Research, 85(2), 451–457. doi:10.1007/BF00229422
  • Forssberg, H., Kinoshita, H., Eliasson, A. C., Johansson, R. S., Westling, G., & Gordon, A. M. (1992). Development of human precision grip. II. Anticipatory control of isometric forces targeted for object’s weight. Experimental Brain Research, 90(2), 393–398. doi:10.1007/BF00227253
  • Gachoud, J. P., Mounoud, P., Hauert, C. A., & Viviani, P. (1983). Motor strategies in lifting movements: A comparison of adult and child performance. Journal of Motor Behavior, 15(3), 202–216. doi:10.1080/00222895.1983.10735297
  • Gentilucci, M. (2002). Object motor representation and reaching-grasping control. Neuropsychologia, 40(8), 1139–1153. doi:10.1016/S0028-3932(01)00233-0
  • Gordon, A. M., Forssberg, H., Johansson, R. S., & Westling, G. (1991a). The integration of haptically acquired size information in the programming of precision grip. Experimental Brain Research, 83(3), 483–488.
  • Gordon, A. M., Forssberg, H., Johansson, R. S., & Westling, G. (1991b). Visual size cues in the programming of manipulative forces during precision grip. Experimental Brain Research, 83(3), 477–482. doi:10.1007/BF00229824
  • Gordon, A. M., Westling, G., Cole, K. J., & Johansson, R. S. (1993). Memory representations underlying motor commands used during manipulation of common and novel objects. Journal of Neurophysiology, 69(6), 1789–1796. doi:10.1152/jn.1993.69.6.1789
  • Gori, M., Del Viva, M., Sandini, G., & Burr, D. C. (2008). Young children do not integrate visual and haptic form information. Current Biology, 18(9), 694–698. doi:10.1016/j.cub.2008.04.036
  • Gréa, H., Desmurget, M., & Prablanc, C. (2000). Postural invariance in three-dimensional reaching and grasping movements. Experimental Brain Research, 134(2), 155–162. doi:10.1007/s002210000427
  • Hay, L. (1978). Accuracy of children on an open-loop pointing task. Perceptual & Motor Skills, 47(3_Suppl), 1079–1082. doi:10.2466/pms.1978.47.3f.1079
  • Hay, L., Bard, C., Ferrel, C., Olivier, I., & Fleury, M. (2005). Role of proprioceptive information in movement programming and control in 5 to 11-year old children. Human Movement Science, 24(2), 139–154. doi:10.1016/j.humov.2005.05.002
  • Hay, L., Fleury, M., Bard, C., & Teasdale, N. (1994). Resolving power of the perceptual- and sensorimotor systems in 6- to 10-year-old children. Journal of Motor Behavior, 26(1), 36–42. doi:10.1080/00222895.1994.9941659
  • Hermsdörfer, J., & Blankenfeld, H. (2008). Grip force control of predictable external loads. Experimental Brain Research, 185(4), 719–728. doi:10.1007/s00221-007-1195-6
  • Hermsdörfer, J., Li, Y., Randerath, J., Goldenberg, G., & Eidenmüller, S. (2011). Anticipatory scaling of grip forces when lifting objects of everyday life. Experimental Brain Research, 212(1), 19–31. doi:10.1007/s00221-011-2695-y
  • Hyde, C. E., & Wilson, P. H. (2011). Dissecting online control in developmental coordination disorder: A kinematic analysis of double-step reaching. Brain & Cognition, 75(3), 232–241. doi:10.1016/j.bandc.2010.12.004
  • Hyde, C. E., & Wilson, P. H. (2011b). Online motor control in children with developmental coordination disorder: Chronometric analysis of double-step reaching performance. Child: Care, Health & Development, 37(1), 111–122. doi:10.1111/j.1365-2214.2010.01131.x
  • Jeannerod, M. (1984). The timing of natural prehension movements. Journal of Motor Behavior, 16(3), 235–254. doi:10.1080/00222895.1984.10735319
  • Johansson, R. S., & Westling, G. (1984). Roles of glabrous skin receptors and sensorimotor memory in automatic control of precision grip when lifting rougher or more slippery objects. Experimental Brain Research, 56(3), 550–564. doi:10.1007/BF00237997
  • Johansson, R. S., & Westling, G. (1988). Coordinated isometric muscle commands adequately and erroneously programmed for the weight during lifting task with precision grip. Experimental Brain Research, 71(1), 59–71. doi:10.1007/BF00247522
  • King, B. R., Pangelinan, M. M., Kagerer, F. A., & Clark, J. E. (2010). Improvements in proprioceptive functioning influence multisensory-motor integration in 7- to 13-year-old children. Neuroscience Letters, 483(1), 36–40. doi:10.1016/j.neulet.2010.07.056
  • Konczak, J., Jansen-Osmann, P., & Kalveram, K.-T. (2003). Development of force adaptation during childhood. Journal of Motor Behavior, 35(1), 41–52. doi:10.1080/00222890309602120
  • Kuhtz-Buschbeck, J. P., Stolze, H., Boczek-Funcke, A., Jöhnk, K., Heinrichs, H., & Illert, M. (1998). Kinematic analysis of prehension movements in children. Behavioural Brain Research, 93(1–2), 131–141. doi:10.1016/S0166-4328(97)00147-2
  • Kuhtz-Buschbeck, J. P., Stolze, H., Jöhnk, K., Boczek-Funcke, A., & Illert, M. (1998). Development of prehension movements in children: A kinematic study. Experimental Brain Research, 122(4), 424–432. doi:10.1007/s002210050530
  • Leat, S. J., Yadav, N. K., & Irving, E. L. (2009). Development of visual acuity and contrast sensitivity in children. Journal of Optometry, 2(1), 19–26. doi:10.3921/joptom.2009.19
  • Massion, J. (1992). Movement, posture and equilibrium: Interaction and coordination. Progress in Neurobiology, 38(1), 35–56. doi:10.1016/0301-0082(92)90034-C
  • Molina, M., Tijus, C., & Jouen, F. (2008). The emergence of motor imagery in children. Journal of Experimental Child Psychology, 99(3), 196–209. doi:10.1016/j.jecp.2007.10.001
  • Nardini, M., Begus, K., & Mareschal, D. (2013). Multisensory uncertainty reduction for hand localization in children and adults. Journal of Experimental Psychology. Human Perception & Performance, 39(3), 773–787. doi:10.1037/a0030719
  • Nardini, M., Jones, P., Bedford, R., & Braddick, O. (2008). Development of cue integration in human navigation. Current Biology, 18(9), 689–693. doi:10.1016/j.cub.2008.04.021
  • Nowak, D. A., Glasauer, S., Meyer, L., Mait, N., & Hermsdörfer, J. (2002). The role of cutaneous feedback for anticipatory grip force adjustments during object movements and externally imposed variation of the direction of gravity. Somatosensory & Motor Research, 19(1), 49–60. doi:10.1080/08990220120113048
  • Olivier, I., Hay, L., Bard, C., & Fleury, M. (2007). Age-related differences in the reaching and grasping coordination in children: Unimanual and bimanual tasks. Experimental Brain Research, 179(1), 17–27. doi:10.1007/s00221-006-0762-6
  • Paré, M., & Dugas, C. (1999). Developmental changes in prehension during childhood. Experimental Brain Research, 125(3), 239–247. doi:10.1007/s002210050679
  • Paulignan, Y., MacKenzie, C., Marteniuk, R., & Jeannerod, M. (1991). Selective perturbation of visual input during prehension movements. 1. The effects of changing object position. Experimental Brain Research, 83(3), 502–512. doi:10.1007/BF00229827
  • Pellizzer, G., & Hauert, C.-A. (1996). Visuo-manual aiming movements in 6-to 10-year-old children: Evidence for an asymmetric and asynchronous development of information processes. Brain & Cognition, 30(2), 175–193. doi:10.1006/brcg.1996.0011
  • Pesarin, F. (2001). Multivariate permutation tests: With applications in biostatistics. New York: Wiley.
  • Plumb, M. S., Wilson, A. D., Mulroue, A., Brockman, A., Williams, J. H. G., & Mon-Williams, M. A. (2008). Online corrections in children with and without DCD. Human Movement Science, 27(5), 695–704. doi:10.1016/j.humov.2007.11.004
  • R Core Team. (2018). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/.
  • Roy, A. C., Curie, A., Nazir, T., Paulignan, Y., Des Portes, V., Fourneret, P., & Deprez, V. (2013). Syntax at hand: Common syntactic structures for actions and language. PLoS One, 8(8), e72677. doi:10.1371/journal.pone.0072677
  • Roy, A. C., Paulignan, Y., Meunier, M., & Boussaoud, D. (2006). Prehension movements in the macaque monkey: Effects of perturbation of object size and location. Experimental Brain Research, 169(2), 182–193. doi:10.1007/s00221-005-0133-8
  • Salimi, I., Hollender, I., Frazier, W., & Gordon, A. M. (2000). Specificity of internal representations underlying grasping. Journal of Neurophysiology, 84(5), 2390–2397. doi:10.1152/jn.2000.84.5.2390
  • Sarlegna, F. R. (2006). Impairment of online control of reaching movements with aging: A double-step study. Neuroscience Letters, 403(3), 309–314. doi:10.1016/j.neulet.2006.05.003
  • Sarlegna, F. R., Blouin, J., Bresciani, J.-P., Bourdin, C., Vercher, J.-L., & Gauthier, G. M. (2003). Target and hand position information in the online control of goal-directed arm movements. Experimental Brain Research, 151(4), 524–535. doi:10.1007/s00221-003-1504-7
  • Sarlegna, F. R., & Mutha, P. K. (2015). The influence of visual target information on the online control of movements. Vision Research, 110(Pt B), 144–154. doi:10.1016/j.visres.2014.07.001
  • Saunders, J. A., & Knill, D. C. (2004). Visual feedback control of hand movements. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 24(13), 3223–3234. doi:10.1523/JNEUROSCI.4319-03.2004
  • Schmitz, C., Jenmalm, P., Ehrsson, H. H., & Forssberg, H. (2005). Brain activity during predictable and unpredictable weight changes when lifting objects. Journal of Neurophysiology, 93(3), 1498–1509. doi:10.1152/jn.00230.2004
  • Schmitz, C., Martin, N., & Assaiante, C. (1999). Development of anticipatory postural adjustments in a bimanual load-lifting task in children. Experimental Brain Research, 126(2), 200–204. doi:10.1007/s002210050729
  • Schmitz, C., Martin, N., & Assaiante, C. (2002). Building anticipatory postural adjustment during childhood: A kinematic and electromyographic analysis of unloading in children from 4 to 8 years of age. Experimental Brain Research. Experimentelle Hirnforschung: Expérimentation Cérébrale, 142(3), 354–364. doi:10.1007/s00221-001-0910-y
  • Schneiberg, S., Sveistrup, H., McFadyen, B., McKinley, P., & Levin, M. F. (2002). The development of coordination for reach-to-grasp movements in children. Experimental Brain Research, 146(2), 142–154. doi:10.1007/s00221-002-1156-z
  • Smeets, J. B., & Brenner, E. (1999). A new view on grasping. Motor Control, 3(3), 237–271.
  • Smyth, M. M., Anderson, H. I., & Churchill, A. C. (2001). Visual information and the control of reaching in children: A comparison between children with and without developmental coordination disorder. Journal of Motor Behavior, 33(3), 306–320. doi:10.1080/00222890109601916
  • Smyth, M. M., Katamba, J., & Peacock, K. A. (2004). Development of prehension between 5 and 10 years of age: Distance scaling, grip aperture, and sight of the hand. Journal of Motor Behavior, 36(1), 91–103. doi:10.3200/JMBR.36.1.91-103
  • Smyth, M. M., Peacock, K. A., & Katamba, J. (2004). The role of sight of the hand in the development of prehension in childhood. The Quarterly Journal of Experimental Psychology. A Human Experimental Psychology, 57(2), 269–296. doi:10.1080/02724980343000215
  • Sober, S. J., & Sabes, P. N. (2003). Multisensory integration during motor planning. The Journal of Neuroscience, 23(18), 6982–6992. doi:10.1523/JNEUROSCI.23-18-06982.2003
  • Sumner, E., Leonard, H. C., & Hill, E. L. (2016). Overlapping phenotypes in autism spectrum disorder and developmental coordination disorder: A cross–syndrome comparison of motor and social skills. Journal of Autism & Developmental Disorders, 46(8), 2609–2620. doi:10.1007/s10803-016-2794-5
  • Thévenet, M., Paulignan, Y., & Prablanc, C. (2001). OPTODISP [Computer software]. License INSERM-CNRS-UCBL.
  • Thibaut, J.-P., & Toussaint, L. (2010). Developing motor planning over ages. Journal of Experimental Child Psychology, 105(1–2), 116–129. doi:10.1016/j.jecp.2009.10.003
  • Veerman, M. M., Brenner, E., & Smeets, J. B. J. (2008). The latency for correcting a movement depends on the visual attribute that defines the target. Experimental Brain Research, 187(2), 219–228. doi:10.1007/s00221-008-1296-x
  • Visser, J., & Geuze, R. H. (2000). Kinaesthetic acuity in adolescent boys: A longitudinal study. Developmental Medicine & Child Neurology, 42(2), 93–96. doi:10.1111/j.1469-8749.2000.tb00052.x
  • Voudouris, D., Smeets, J. B. J., & Brenner, E. (2013). Ultra-fast selection of grasping points. Journal of Neurophysiology, 110(7), 1484–1489. doi:10.1152/jn.00066.2013
  • Weir, P. L., MacKenzie, C. L., Marteniuk, R. G., Cargoe, S. L., & Frazer, M. B. (1991). The effects of object weight on the kinematics of prehension. Journal of Motor Behavior, 23(3), 192–204. doi:10.1080/00222895.1991.10118362
  • Westling, G., & Johansson, R. S. (1984). Factors influencing the force control during precision grip. Experimental Brain Research, 53(2), 277–284. doi:10.1007/BF00238156
  • Wilson, P. H., & Hyde, C. E. (2013). The development of rapid online control in children aged 6–12 years: Reaching performance. Human Movement Science, 32(5), 1138. doi:10.1016/j.humov.2013.02.008
  • Zhang, Y., Brenner, E., Duysens, J., Verschueren, S., & Smeets, J. B. J. (2018). Postural responses to target jumps and background motion in a fast pointing task. Experimental Brain Research, 236(6), 1573–1581. doi:10.1007/s00221-018-5222-6
  • Zoia, S., Pezzetta, E., Blason, L., Scabar, A., Carrozzi, M., Bulgheroni, M., & Castiello, U. (2006). A comparison of the reach-to-grasp movement between children and adults: A kinematic study. Developmental Neuropsychology, 30(2), 719–738. doi:10.1207/s15326942dn3002_4

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.