205
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Bilateral Transcranial Direct Stimulation Over the Primary Motor Cortex Alters Motor Modularity of Multiple Muscles

, &
Pages 474-488 | Received 24 Nov 2018, Accepted 09 Jul 2019, Published online: 03 Dec 2019

References

  • Angius, L., Mauger, A. R., Hopker, J., Pascual-Leone, A., Santarnecchi, E., & Marcora, S. M. (2018). Bilateral extracephalic transcranial direct current stimulation improves endurance performance in healthy individuals. Brain Stimulation, 11(1), 108–117. doi:10.1016/j.brs.2017.09.017
  • Arias, P., Corral-Bergantiños, Y., Robles-García, V., Madrid, A., Oliviero, A., & Cudeiro, J. (2016). Bilateral tDCS on primary motor cortex: Effects on fast arm reaching tasks. PLoS One, 11(8), e0160063–17. doi:10.1371/journal.pone.0160063
  • Avella, A., Portone, A., & Lacquaniti, F. (2011). Superposition and modulation of muscle synergies for reaching in response to a change in target location. Journal of Neurophysiology, 106(6), 2796–2812. doi:10.1152/jn.00675.2010
  • Bogdanov, M., Timmermann, J. E., Gläscher, J., Hummel, F. C., & Schwabe, L. (2018). Causal role of the inferolateral prefrontal cortex in balancing goal-directed and habitual control of behavior. Scientific Reports, 8, 1–11. doi:10.1038/s41598-018-27678-6
  • Bolzoni, F., Bruttini, C., Esposti, R., Castellani, C., & Cavallari, P. (2015). Transcranial direct current stimulation of SMA modulates anticipatory postural adjustments without affecting the primary movement. Behavioural Brain Research, 291, 407–413. doi:10.1016/j.bbr.2015.05.044
  • Cheung, V. C. K., Turolla, A., Agostini, M., Silvoni, S., Bennis, C., Kasi, P., … Bizzi, E. (2012). Muscle synergy patterns as physiological markers of motor cortical damage. Proceedings of the National Academy of Sciences, 109(36), 14652–14656. http://www.pnas.org/cgi/doi/10.1073/pnas.1212056109 doi:10.1073/pnas.1212056109
  • Cogiamanian, F., Marceglia, S., Ardolino, G., Barbieri, S., & Priori, A. (2007). Improved isometric force endurance after transcranial direct current stimulation over the human motor cortical areas. European Journal of Neuroscience, 26(1), 242–249. doi:10.1111/j.1460-9568.2007.05633.x
  • d’Avella, A., Fernandez, L., Portone, A., & Lacquaniti, F. (2008). Modulation of phasic and tonic muscle synergies with reaching direction and speed. Journal of Neurophysiology, 100, 1433–1454. http://jn.physiology.org/cgi/doi/10.1152/jn.01377.2007. doi:10.1152/jn.01377.2007
  • d’Avella, A., Portone, A., Fernandez, L., & Lacquaniti, F. (2006). Control of fast-reaching movements by muscle synergy combinations. The Journal of Neuroscience, 26, 7791–7810. http://www.jneurosci.org/cgi/doi/10.1523/JNEUROSCI.0830-06.2006. doi:10.1523/JNEUROSCI.0830-06.2006
  • Desmurget, M., & Grafton, S. (2000). Forward modeling allows feedback control for fast reaching movements. Trends in Cognitive Sciences, 4(11), 423–431.
  • Di Pietro, F., McAuley, J. H., Parkitny, L., Lotze, M., Wand, B. M., Moseley, G. L., & Stanton, T. R. (2013). Primary motor cortex function in complex regional pain syndrome: A systematic review and meta-analysis. The Journal of Pain, 14(11), 1270–1288. doi:10.1016/j.jpain.2013.07.004
  • Federolf, P. A. (2016). A novel approach to study human posture control: “Principal movements” obtained from a principal component analysis of kinematic marker data. Journal of Biomechanics, 49(3), 364–370. doi:10.1016/j.jbiomech.2015.12.030
  • Frère, J., & Hug, F. (2012). Between-subject variability of muscle synergies during a complex motor skill. Frontiers in Computational Neuroscience, 6, 1–13.
  • Fu, Q. G., Flament, D., Coltz, J. D., & Ebner, T. J. (1995). Temporal encoding of movement kinematics in the discharge of primate primary motor and premotor neurons. Journal of Neurophysiology, 73(2), 836–854. doi:10.1152/jn.1995.73.2.836
  • Gizzi, L., Nielsen, J. F., Felici, F., Ivanenko, Y. P., & Farina, D. (2011). Impulses of activation but not motor modules are preserved in the locomotion of subacute stroke patients. Journal of Neurophysiology, 106(1), 202–210. doi:10.1152/jn.00727.2010
  • Gosser, S. M., & Rice, M. S. (2015). Efficiency of unimanual and bimanual reach in persons with and without stroke. Topics in Stroke Rehabilitation, 22(1), 56–62. http://www.tandfonline.com/doi/full/10.1179/1074935714Z.0000000002. doi:10.1179/1074935714Z.0000000002
  • Hattori, Y., Moriwaki, A., & Hori, Y. (1990). Biphasic effects of polarizing current on adenosine-sensitive generation of cyclic AMP in rat cerebral cortex. Neuroscience Letters, 116(3), 320–324. doi:10.1016/0304-3940(90)90094-p
  • Hermens, H. J., Freriks, B., Disselhorst-Klug, C., & Rau, G. (2000). Development of recommendations for SEMG sensors and sensor placement procedures. Journal of Electromyography and Kinesiology, 10(5), 361–374.
  • Hughes, A. M., Freeman, C. T., Burridge, J. H., Chappell, P. H., Lewin, P. L., & Rogers, E. (2010). Shoulder and elbow muscle activity during fully supported trajectory tracking in people who have had a stroke. Journal of Electromyography and Kinesiology, 20(3), 465–476. doi:10.1016/j.jelekin.2009.08.001
  • Ilngle, D. (1968) The co-ordination and regulation of movements. Papers translated from Russian and German. N. Bernstein. Pergamon, New York, 1967. xii + 196 pp., illus. $8. Science, 159:415–416. http://www.sciencemag.org/cgi/doi/10.1126/science.159.3813.415-a. doi:10.1126/science.159.3813.415-a
  • Islam, N., Aftabuddin, M., Moriwaki, A., Hattori, Y., & Hori, Y. (1995). Increase in the calcium level following anodal polarization in the rat brain. Brain Research, 684(2), 206–208. doi:10.1016/0006-8993(95)00434-r
  • Jeffery, D. T., Norton, J. A., Roy, F. D., & Gorassini, M. A. (2007). Effects of transcranial direct current stimulation on the excitability of the leg motor cortex. Experimental Brain Research, 182(2), 281–287. doi:10.1007/s00221-007-1093-y
  • Kang, N., Summers, J. J., & Cauraugh, J. H. (2016). Non-invasive brain stimulation improves paretic limb force production: A systematic review and meta-analysis. Brain Stimulation, 9(5), 662–670. doi:10.1016/j.brs.2016.05.005
  • Kaski, D., Dominguez, R. O., Allum, J. H., Islam, A. F., & Bronstein, A. M. (2014). Combining physical training with transcranial direct current stimulation to improve gait in Parkinson’s disease: A pilot randomized controlled study. Clinical Rehabilitation, 28(11), 1115–1124. doi:10.1177/0269215514534277
  • Kidgell, D. J., Goodwill, A. M., Frazer, A. K., & Daly, R. M. (2013). Induction of cortical plasticity and improved motor performance following unilateral and bilateral transcranial direct current stimulation of the primary motor cortex. BMC Neuroscience, 14(1), 64. doi:10.1186/1471-2202-14-64
  • Krishnan, C., Ranganathan, R., Kantak, S. S., Dhaher, Y. Y., & Rymer, W. Z. (2014). Anodal transcranial direct current stimulation alters elbow flexor muscle recruitment strategies. Brain Stimulation, 7(3), 443–450. doi:10.1016/j.brs.2014.01.057
  • Kuhn, A. S., Fernández, C. P., Cánovas, R., Flores, P., & Santed, F. S. (2017). Transcranial direct current stimulation as a motor neurorehabilitation tool: An empirical review. Biomedical Engineering Online, 16, 115–136. doi:10.1186/s12938-017-0361-8
  • Lacquaniti, F., & Soechting, J. F. (1982). Coordination of arm and wrist motion during. The Journal of Neuroscience, 2(4), 399–408.
  • Latash, M. L., Li, Z. M., & Zatsiorsky, V. M. (1998). A principle of error compensation studied within a task of force production by a redundant set of fingers. Experimental Brain Research, 122(2), 131–138.
  • Leite, J., Carvalho, S., Fregni, F., & Gonçalves, Ó. F. (2011). Task-specific effects of tDCS-induced cortical excitability changes on cognitive and motor sequence set shifting performance. PLoS One, 6(9), e24140–9. doi:10.1371/journal.pone.0024140
  • Lin, J., Hanten, W. P., Olson, S. L., Roddey, T. S., Soto-Quijano, D. A., Lim, H. K., & Sherwood, A. M. (2005). Functional activity characteristics of individuals with shoulder dysfunctions. Journal of Electromyography and Kinesiology, 15(6), 576–586. doi:10.1016/j.jelekin.2005.01.006
  • Lin, S. I., & Liao, C. F. (2011). Age-related changes in the performance of forward reach. Gait Posture, 33(1), 18–22. doi:10.1016/j.gaitpost.2010.09.013
  • Loftus, A. M., Yalcin, O., Baughman, F. D., Vanman, E. J., & Hagger, M. S. (2015). The impact of transcranial direct current stimulation on inhibitory control in young adults. Brain and Behavior, 5(5), n/a–9. doi:10.1002/brb3.332
  • Mccambridge, A. B., Bradnam, L. V., Stinear, C. M., & Byblow, W. D. (2011). Cathodal transcranial direct current stimulation of the primary motor cortex improves selective muscle activation in the ipsilateral arm. Journal of Neurophysiology, 105(6), 2937–2942. doi:10.1152/jn.00171.2011
  • Merkle, L. A., Layne, C. S., Bloomberg, J. J., & Zhang, J. J. (1998). Using factor analysis to identify neuromuscular synergies during treadmill walking. Journal of Neuroscience Methods, 82(2), 207–214. doi:10.1016/S0165-0270(98)00054-5
  • Mordillo-Mateos, L., Turpin-Fenoll, L., Millán-Pascual, J., Núñez-Pérez, N., Panyavin, I., Gómez-Argüelles, J. M., … Oliviero, A. (2012). Effects of simultaneous bilateral tDCS of the human motor cortex. Brain Stimulation, 5(3), 214–222. doi:10.1016/j.brs.2011.05.001
  • Moura, R. C. F., Santos, C., Collange Grecco, L., Albertini, G., Cimolin, V., Galli, M., & Oliveira, C. (2017). Effects of a single session of transcranial direct current stimulation on upper limb movements in children with cerebral palsy: A randomized, sham-controlled study. Developmental Neurorehabilitation, 20(6), 368–375. doi:10.1080/17518423.2017.1282050
  • Muceli, S., Boye, A. T., Avella, A., & Farina, D. (2010). Identifying representative synergy matrices for describing muscular activation patterns during multidirectional reaching in the horizontal plane. Journal of Neurophysiology, 103(3), 1532–1542. doi:10.1152/jn.00559.2009
  • Nitsche, M. A., Cohen, L. G., Wassermann, E. M., Priori, A., Lang, N., Antal, A., … Pascual-Leone, A. (2008). Transcranial direct current stimulation: State of the art 2008. Brain Stimulation, 1(3), 206–223. doi:10.1016/j.brs.2008.06.004
  • Nitsche, M. A., & Paulus, W. (2000). Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. The Journal of Physiology, 527(3), 633–639. doi:10.1111/j.1469-7793.2000.t01-1-00633.x
  • Oldfield, R. C. (1971). The assessment and analysis of handedness: Edinburgh Inventory. Neuropsychologia, 9(1), 97–113.
  • Oliveira, A. S., Gizzi, L., Farina, D., Kersting, U. G., Clark, D. J., & Va, M. R. (2014). Motor modules of human locomotion: Influence of EMG averaging, concatenation, and number of step cycles. Frontiers in Human Neuroscience, 8, 1–9.
  • Oliveira, A. S., Silva, P. B., Lund, M. E., Farina, D., & Kersting, U. (2017). Balance training enhances motor coordination during a perturbed sidestep cutting task. Journal of Orthopaedic and Sports Physical Therapy, 47, 853–863. doi:10.2519/jospt.2017.6980
  • Padberg, F., Kumpf, U., Mansmann, U., Palm, U., Plewnia, C., Langguth, B., … Bajbouj, M. (2017). Prefrontal transcranial direct current stimulation (tDCS) as treatment for major depression: Study design and methodology of a multicenter triple blind randomized placebo controlled trial (DepressionDC). European Archives of Psychiatry and Clinical Neuroscience, 267(8), 751–766. doi:10.1007/s00406-017-0769-y
  • Pavlova, E., Kuo, M. F., Nitsche, M. A., & Borg, J. (2014). Transcranial direct current stimulation of the premotor cortex: Effects on hand dexterity. Brain Research, 1576, 52–62. doi:10.1016/j.brainres.2014.06.023
  • Pruszynski, J. A., Kurtzer, I., Nashed, J. Y., Omrani, M., Brouwer, B., & Scott, S. H. (2011). Primary motor cortex underlies multi-joint integration for fast feedback control. Nature, 478(7369), 387–390. doi:10.1038/nature10436
  • Rand, M. K., & Shimansky, Y. P. (2013). Two-phase strategy of neural control for planar reaching movements: I. XY coordination variability and its relation to end-point variability. Experimental Brain Research, 225(1), 55–73. doi:10.1007/s00221-012-3348-5
  • Reis, J., & Fritsch, B. (2011). Modulation of motor performance and motor learning by transcranial direct current stimulation. Current Opinion in Neurology, 24(6), 590–596. doi:10.1097/WCO.0b013e32834c3db0
  • Reis, J., Schambra, H. M., Cohen, L. G., Buch, E. R., Fritsch, B., Zarahn, E., … Krakauer, J. W. (2009). Noninvasive cortical stimulation enhances motor skill acquisition over multiple days through an effect on consolidation. Proceedings of the National Academy of Sciences, 106(5), 1590–1595. doi:10.1073/pnas.0805413106
  • Reza, S. V., Homayoun, A., & Boostani, R. (2017). Muscle synergy extraction during arm reaching movements at different speeds. Technology and Health Care, 25, 123–136. doi:10.3233/THC-161256
  • Robertson, J. V. G., & Roby-Brami, A. (2011). The trunk as a part of the kinematic chain for reaching movements in healthy subjects and hemiparetic patients. Brain Research, 1382, 137–146. doi:10.1016/j.brainres.2011.01.043
  • Roche, N., Lackmy, A., Achache, V., Bussel, B., & Katz, R. (2011). Effects of anodal transcranial direct current stimulation over the leg motor area on lumbar spinal network excitability in healthy subjects. The Journal of Physiology, 11, 2813–2826. doi:10.1113/jphysiol.2011.205161
  • Saeys, W., Vereeck, L., Lafosse, C., Truijen, S., Wuyts, F. L., & Van De Heyning, P. (2015). Transcranial direct current stimulation in the recovery of postural control after stroke: A pilot study. Disability and Rehabilitation, 37(20), 1857–1863. doi:10.3109/09638288.2014.982834
  • Schadea, S., Moliadzeb, V., Paulusa, W., & Antala, A. (2012). Modulating neuronal excitability in the motor cortex with tDCS shows moderate hemispheric asymmetry due to subjects’ handedness: A pilot study. Restorative Neurology and Neuroscience, 30, 191–198.
  • Sehm, B., Kipping, J., Schäfer, A., Villringer, A., & Ragert, P. (2013). A comparison between uni- and bilateral tDCS effects on functional connectivity of the human motor cortex. Frontiers in Human Neuroscience, 7, 1–7.
  • Seidler, R. D., Bernard, J. A., Burutolu, T. B., Fling, B. W., Gordon, M. T., Gwin, J. T., … Lipps, D. B. (2011 ). Motor control and aging: Links to age-related brain structural, functional, and biochemical effects. Neuroscience & Biobehavioral Reviews, 34, 721–733. doi:10.1016/j.neubiorev.2009.10.005
  • Sergio, L. E., Kalaska, J. F., & Canada, H. C. (1998). Changes in the temporal pattern of primary motor cortex activity in a directional isometric force versus limb movement task. Journal of Neurophysiology, 80(3), 1577–1583. doi:10.1152/jn.1998.80.3.1577
  • Sohn, M. K., Jee, S. J., & Kim, Y. W. (2013). Effect of transcranial direct current stimulation on postural stability and lower extremity strength in hemiplegic stroke patients. Annals of Rehabilitation Medicine, 37(6), 759–765. doi:10.5535/arm.2013.37.6.759
  • Staudenmann, D., & Taube, W. (2015). Brachialis muscle activity can be assessed with surface electromyography. Journal of Electromyography and Kinesiology, 25(2), 199–204. doi:10.1016/j.jelekin.2014.11.003
  • Taborri, J., Agostini, V., Artemiadis, P. K., Ghislieri, M., Jacobs, D. A., Roh, J., & Rossi, S. (2018). Feasibility of muscle synergy outcomes in clinics, robotics, and sports: A systematic review. Journal of Applied Bionics and Biomechanics, 2018, 1–19. https://doi.org/10.1155/2018/3934698
  • Teka, W. W., Hamade, K. C., Barnett, W. H., Kim, T., Markin, N., Rybak, I. A., & Molkov, Y. I. (2017). From the motor cortex to the movement and back again. Plos One, 12(6), e0179288. doi:10.1371/journal.pone.0179288
  • Lillicrap, T. P., & Scott, S. H. (2013). Preference distributions of primary motor cortex neurons reflect control solutions optimized for limb biomechanics. Neuron, 77(1), 168–179. doi:10.1016/j.neuron.2012.10.041
  • Tresch, M. C., Cheung, V. C. K., Avella, A., M. C., Cheung, V. C. K., & Avella, A. (2006). Matrix factorization algorithms for the identification of muscle synergies: Evaluation on simulated and experimental data sets. Journal of Neurophysiology, 95(4), 2199–2212. doi:10.1152/jn.00222.2005
  • Trumbower, R. D., Ravichandran, V. J., Krutky, M. A., & Perreault, E. J. (2009). Altered multijoint reflex coordination is indicative of motor impairment level following stroke. Conference of the IEEE Engineering in Medicine and Biology Society, 2008, 3558–3561.
  • Uehara, K., Coxon, J. P., & Byblow, W. D. (2015). Transcranial direct current stimulation improves ipsilateral selective muscle activation in a frequency dependent manner. PLoS One, 10(3), e0122434–14. doi:10.1371/journal.pone.0122434
  • Vines, B. W., Cerruti, C., & Schlaug, G. (2008). Dual-hemisphere tDCS facilitates greater improvements for healthy subjects’ non-dominant hand compared to uni-hemisphere stimulation. BMC Neuroscience, 7, 1–7. doi:10.1186/1471-2202-9-103
  • Waters-Metenier, S., Husain, M., Wiestler, T., & Diedrichsen, J. (2014). Bihemispheric transcranial direct current stimulation enhances effector-independent representations of motor synergy and sequence learning. The Journal of Neuroscience, 34(3), 1037–1050. http://www.jneurosci.org/lookup/doi/10.1523/JNEUROSCI.2282-13.2014. doi:10.1523/JNEUROSCI.2282-13.2014
  • Weber, Z., Srinivasan, D., & Côté, J. (2018). Sex-specific links in motor and sensory adaptations to repetitive motion-induced fatigue. Motor Control, 22(2), 149–169. doi:10.1123/mc.2017-0004
  • Yoo, I., Jung, M., Yoo, E., Park, J., Kang, D., & Lee, J. (2014). A comparison of hemisphere-specific training pattern in inter-limb learning transfer (ILT) for stroke patients with hemiparesis. Neurorehabilitation, 34(2), 277–286. doi:10.3233/NRE-131040

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.