824
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

Molecular Mechanisms Associated with the Benefits of Variable Practice in Motor Learning

ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 515-526 | Received 15 Jan 2019, Accepted 22 Jul 2019, Published online: 07 Aug 2019

References

  • Alink, A., Schwiedrzik, C. M., Kohler, A., Singer, W., & Muckli, L. (2010). Stimulus predictability reduces responses in primary visual cortex. Journal of Neuroscience, 30(8), 2960–2966. doi:10.1523/JNEUROSCI.3730-10.2010
  • Bear, M. F. (1996). A synaptic basis for memory storage in the cerebral cortex. Proceedings of the National Academy of Sciences of Sciences the United States of America, 93(24), 13453–13459. doi:10.1073/pnas.93.24.13453
  • Bear, M. F., Connors, B. W., & Paradiso, M. A. (2002). Neurociências: Desvendando o sistema nervoso (2a). Porto Alegre: Artmed.
  • Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1–2), 248–254. doi:10.1016/0003-2697(76)90527-3
  • Brady, F. (2004). Contextual interference: A meta-analytic study. Perceptual and Motor Skills, (99(1), 116–126. doi:10.2466/pms.99.1.116-126
  • Broadbent, D. P., Causer, J., Mark Williams, A., & Ford, P. R. (2017). The role of error processing in the contextual interference effect during the training of perceptual-cognitive skills. Journal of Experimental Psychology: Human Perception and Performance, 43(7), 1329–1342. doi:10.1037/xhp0000375
  • Cantarero, G., Tang, B., O’Malley, R., Salas, R., & Celnik, P. (2013). Motor learning interference is proportional to occlusion of LTP-like plasticity. The Journal of Neuroscience, 33(11), 4634–4641. doi:10.1523/JNEUROSCI.4706-12.2013
  • Chalavi, S., Pauwels, L., Heise, K.-F., Zivari Adab, H., Maes, C., Puts, N. A. J., … Swinnen, S. P. (2018). The neurochemical basis of the contextual interference effect. Neurobiology of Aging, 66, 85–96. doi:10.1016/j.neurobiolaging.2018.02.014
  • Classen, J., Liepert, J., Wise, S. P., Hallett, M., & Cohen, L. G. (1998). Rapid plasticity of human cortical movement representation induced by practice. Journal of Neurophysiology, 79(2), 1117–1123. doi:10.1152/jn.1998.79.2.1117
  • Cooke, S. F., & Bliss, T. V. P. (2006). Plasticity in the human central nervous system. Brain, 129(7), 1659–1673. doi:10.1093/brain/awl082
  • Cross, E. S., Schmitt, P. J., & Grafton, S. T. (2007). Neural substrates of contextual interference during motor learning support a model of active preparation. Journal of Cognitive Neuroscience, 19(11), 1854–1871. doi:10.1162/jocn.2007.19.11.1854
  • Fuster, J. M. (2017). Prefrontal cortex in decision-making. In Decision neuroscience (pp. 95–105). United Kingdom: Elsevier.
  • Fuster, J. M. (2006). The cognit: A network model of cortical representation. International Journal of Psychophysiology, 60(2), 125–132. doi:10.1016/j.ijpsycho.2005.12.015
  • Gallistel, C. R., & Matzel, L. D. (2013). The neuroscience of learning: Beyond the Hebbian synapse. The Annual Review of Psychology, 64(7), 1–7.
  • Gonçalves, W. R., Lage, G. M., Silva, A. B. D., Ugrinowitsch, H., & Benda, R. N. (2007). O efeito da interferência contextual em idosos. Revista Portuguesa de Ciências Do Desporto, 7(2), 217–224. doi:10.5628/rpcd.07.02.217
  • Grosshans, D. R., Clayton, D. A., Coultrap, S. J., & Browning, M. D. (2002). LTP leads to rapid surface expression of NMDA but not AMPA receptors in adult rat CA1. Nature Neuroscience, 5(1), 27–33. doi:10.1038/nn779
  • Harms, K. J., Rioult-Pedotti, M. S., Carter, D. R., & Dunaevsky, A. (2008). Transient spine expansion and learning-induced plasticity in layer 1 primary motor cortex. Journal of Neuroscience, 28(22), 5686–5690. doi:10.1523/JNEUROSCI.0584-08.2008
  • Hasan, M. T., Hernández-González, S., Dogbevia, G., Treviño, M., Bertocchi, I., Gruart, A., & Delgado-García, J. M. (2013). Role of motor cortex NMDA receptors in learning-dependent synaptic plasticity of behaving mice. Nature Communications, 4, 1–9. doi:10.1038/ncomms3831
  • Hebb, D. O. (1949). The organization of behavior: A neuropsychological theory (Erlbaum ed.). New York, NY: Wiley.
  • Henz, D., & Schöllhorn, W. I. (2018). Temporal courses in EEG theta and alpha activity in the dynamic health qigong techniques. Frontiers in Psychology, 8, 1–12. doi:10.3389/fpsyg.2017.02291
  • Hess, G., & Donoghue, J. P. (1996). Long-term potentiation and horizontal connections in rat motor cortex. Acta Neurobiologiae Experimentalis, 56, 397–405. doi:10.1111/j.1460-9568.1996.tb01251.x
  • Hsu, T.-Y., Tseng, L.-Y., Yu, J.-X., Kuo, W.-J., Hung, D. L., Tzeng, O. J. L., … Juan, C.-H. (2011). Modulating inhibitory control with direct current stimulation of the superior medial frontal cortex. NeuroImage, 56(4), 2249–2257. doi:10.1016/j.neuroimage.2011.03.059
  • Kandel, E. R. (2001). The molecular biology of memory storage: A dialogue between gene and synapses. Science, 294(5544), 1030–1038. doi:10.1126/science.1067020
  • Karni, A., Meyer, G., Jezzard, P., Adams, M. M., Turner, R., & Ungerleider, L. G. (1995). Functional MRI evidence for adult motor cortex plasticity during motor skill learning. Nature, 377, 155–158. Vol. doi:10.1038/377155a0
  • Karni, A., Meyer, G., Rey-Hipolito, C., Jezzard, P., Adams, M. M., Turner, R., & Ungerleider, L. G. (1998). The acquisition of skilled motor performance: Fast and slow experience-driven changes in primary motor cortex. Proceedings of the National Academy of Sciences of the United States of America, 95(3), 861–868. doi:10.1073/pnas.95.3.861
  • Kida, H., Tsuda, Y., Ito, N., Yamamoto, Y., Owada, Y., Kamiya, Y., & Mitsushima, D. (2016). Motor training promotes both synaptic and intrinsic plasticity of layer II/III pyramidal neurons in the primary motor cortex. Cerebral Cortex, 26(8), 3494–3507. doi:10.1093/cercor/bhw134
  • Kleim, J. A., Lussnig, E., Schwarz, E. R., Comery, T. A., & Greenough, W. T. (1996). Synaptogenesis and Fos expression in the motor cortex of the adult rat after motor skill learning. The Journal of Neuroscience, 16(14), 4529–4535.
  • Lage, G. M., Ugrinowitsch, H., Apolinário-Souza, T., Vieira, M. M., Albuquerque, M. R., & Benda, R. N. (2015). Repetition and variation in motor practice: A review of neural correlates. Neuroscience & Biobehavioral Reviews, 57, 132–141. doi:10.1016/j.neubiorev.2015.08.012
  • Lage, G. M., Apolinário-Souza, T., Albuquerque, M. R., Portes, L. L., Da Silva Januário, M., Vieira, M. M., … Ugrinowitsch, H. (2017). The effect of constant practice in transfer tests. Motriz: Revista de Educação Física, 23(1), 22–32. doi:10.1590/s1980-6574201700010004
  • Lee, T. D., Swanson, L. R., & Hall, A. L. (1991). What is repeated in a repetition? Effects of practice conditions on motor skill acquisition. Physical Therapy, 71(2), 150–156. doi:10.1093/ptj/71.2.150
  • Lee, T., & Magill, R. (1983). The locus of contextual interference in motor-skill acquisition. Journal of Experimental Psychology: Learning, Memory, and Cognition, 9(4), 730–746. doi:10.1037//0278-7393.9.4.730
  • Lelis-Torres, N., Ugrinowitsch, H., Apolinário-Souza, T., Benda, R. N., & Lage, G. M. (2017). Task engagement and mental workload involved in variation and repetition of a motor skill. Scientific Reports, 7, 1–10.
  • Lu, W. Y., Man, H. Y., Ju, W., Trimble, W. S., MacDonald, J. F., & Wang, Y. T. (2001). Activation of synaptic NMDA receptors induces membrane insertion of new AMPA receptors and LTP in cultured hippocampal neurons. Neuron, 29(1), 243–254. doi:10.1016/S0896-6273(01)00194-5
  • Ma, L., Qiao, Q., Tsai, J.-W., Yang, G., Li, W., & Gan, W.-B. (2016). Experience-dependent plasticity of dendritic spines of layer 2/3 pyramidal neurons in the mouse cortex. Developmental Neurobiology, 1848(3), 3047–3054. doi:10.1002/dneu.22313
  • Magill, R. A., & Hall, K. G. (1990). A review of the contextual interference in motor skill acquisition. Human Movement Science, 9(3-5), 241–289. doi:10.1016/0167-9457(90)90005-X
  • Malenka, R. C., & Nicoll, R. A. (1999). Long-term potentiation-a decade of progress? Science (New York, N.Y.), 285(5435), 1870–1874. doi:10.1126/science.285.5435.1870
  • Mayer, M. L., Westbrook, G. L., & Guthrie, P. B. (1984). Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones. Nature, 309(5965), 261–263. doi:10.1038/309261a0
  • Morris, R. G. M., Anderson, E., Lynch, G. S., & Baudry, M. (1986). Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist, AP5. Nature, 319(6056), 774–776. doi:10.1038/319774a0
  • Moxley, S. E. E. (1979). Schema: The variability of practice hypothesis. Journal of Motor Behavior, 11(1), 65–70. doi:10.1080/00222895.1979.10735173
  • Nicoll, R. A. (2017). A brief history of long-term potentiation. Neuron, 93(2), 281–290. doi:10.1016/j.neuron.2016.12.015
  • Nowak, L., Bregestovski, P., Ascher, P., Herbet, A., & Prochiantz, A. (1984). Magnesium gates glutamate-activated channels in mouse central neurons. Nature, 307(5950), 462–465. doi:10.1038/307462a0
  • Nudo, R. J., & Milliken, G. W. (1996). Reorganization of movement representations in primary motor cortex following focal ischemic infarcts in adult squirrel monkeys. Journal of Neurophysiology, 75(5), 2144–2149. doi:10.1152/jn.1996.75.5.2144
  • Padmashri, R., Reiner, B. C., Suresh, A., Spartz, E., & Dunaevsky, A. (2013). Altered structural and functional synaptic plasticity with motor skill learning in a mouse model of fragile X syndrome. Journal of Neuroscience, 33(50), 19715–19723. doi:10.1523/JNEUROSCI.2514-13.2013
  • Paxinos, G., & Watson, C. (2007). The mouse brain in stereotaxic coordinates (6th ed.). Amsterdam, The Netherlands: Elsevier.
  • Riedel, G., Platt, B., & Micheau, J. (2003). Glutamate receptor function in learning and memory. Behavioural Brain Research, 140(1-2), 1–47. doi:10.1016/S0166-4328(02)00272-3
  • Rioult-Pedotti, M. S., Friedman, D., & Donoghue, J. P. (2000). Learning-induced LTP in neocortex. Science (New York, N.Y.), 290(5491), 533–536. doi:10.1126/science.290.5491.533
  • Rioult-Pedotti, M. S., Friedman, D., Hess, G., & Donoghue, J. P. (1998). Strengthening of horizontal cortical connections following skill learning. Nature Neuroscience, 1(3), 230–234. doi:10.1038/678
  • Rumpel, S., Ledoux, J., Zador, A., & Malinow, R. (2007). Postsynaptic receptor trafficking underlying a form of associative learning postsynaptic receptor trafficking underlying a form of associative learning. Science, 83(2005), 83–88. doi:10.1126/science.1103944
  • Sale, M. V., Nydam, A. S., & Mattingley, J. B. (2017). Stimulus uncertainty enhances long-term potentiation-like plasticity in human motor cortex. Cortex, 88, 32–41. doi:10.1016/j.cortex.2016.12.008
  • Salmoni, A. W., Schmidt, R. A., & Walter, C. B. (1984). Knowledge of results and motor learning: A review and critical reappraisal. Psychological Bulletin, 95(3), 355–386. doi:10.1037//0033-2909.95.3.355
  • Shea, C. H., & Kohl, R. M. (1990). Specificity and variability of practice. Research Quarterly for Exercise and Sport, 61(2), 169–177. doi:10.1080/02701367.1990.10608671
  • Shea, J. B., & Morgan, R. L. (1979). Contextual interference effects on the acquisition, retention, and transfer of a motor skill. Journal of Experimental Psychology: Human Learning & Memory, 5(2), 179–187. doi:10.1037/0278-7393.5.2.179
  • Shea, J. B., & Zimny, S. T. (1983). Context effects in memory and learning movement information. Memory and Control of Action, 12, 345–365.
  • Sweatt, J. D. (1999). Toward a molecular explanation for long-term potentiation. Learning & Memory (Cold Spring Harbor, N.Y.), 6(5), 399–416.
  • Tabone, C. J., & Ramaswami, M. (2012). Is NMDA receptor-coincidence detection required for learning and memory? Neuron, 74(5), 767–769.
  • Tanaka, S., Honda, M., Hanakawa, T., & Cohen, L. L. G. (2010). Differential contribution of the supplementary motor area to stabilization of a procedural motor skill acquired through different practice schedules. Cerebral Cortex, 20(9), 2114–2121. doi:10.1093/cercor/bhp276
  • Thürer, B., Stockinger, C., Putze, F., Schultz, T., & Stein, T. (2017). Mechanisms within the parietal cortex correlate with the benefits of random practice in motor adaptation. Frontiers in Neuroscience, 11, 1–11. doi:10.3389/fnhum.2017.00403.
  • Whitlock, J. R., Heynen, A. J., Shuler, M. G., & Bear, M. F. (2006). Learning Induces long-term potentiation in the hippocampus. Science (New York, N.Y.), 313(5790), 1093–1097. doi:10.1126/science.1128134
  • Winstein, C. J., & Schmidt, R. A. (1990). Reduced frequency of knowledge of results enhances. Motor Skill Learning, 16(4), 677–691. doi:10.1037/0278-7393.16.4.677
  • Wymbs, N., & Grafton, S. (2009). Neural substrates of practice structure that support future off-line learning. Journal of Neurophysiology, 102(4), 2462–2476. doi:10.1152/jn.00315.2009

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.