359
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

Grip Force-Load Force Coupling Is Influenced by Altered Visual Feedback about Object Kinematics

ORCID Icon, ORCID Icon &
Pages 612-624 | Received 25 May 2019, Accepted 30 Aug 2019, Published online: 16 Sep 2019

References

  • Abarbanel, H. D. I. (1996). Analysis of observed chaotic data. New York, NY: Springer-Verlag.
  • Augurelle, A.-S., Smith, A. M., Lejeune, T., & Thonnard, J.-L. (2003). Importance of cutaneous feedback in maintaining a secure grip during manipulation of hand-held objects. Journal of Neurophysiology, 89(2), 665–671. doi:10.1152/jn.00249.2002
  • Charpentier, A. (1891). Analyse experimentale de quelques elements de la sensation de poids [Experimental study of some aspects of weight perception]. Archives de Physiologie Normales et Pathologiques, 3, 122–135.
  • Chase, R. A., Cullen, J. K., Jr., Openshaw, J. W., & Sullivan, S. A. (1965). Studies on sensory feedback: III the effects of display gain on tracking performance. Quarterly Journal of Experimental Psychology, 17(3), 193–208. doi:10.1080/17470216508416433
  • Danion, F., & Sarlegna, F. R. (2007). Can the human brain predict the consequences of arm movement corrections when transporting an object? Hints from grip force adjustments. Journal of Neuroscience, 27(47), 12839–12843. doi:10.1523/JNEUROSCI.3110-07.2007
  • de Winter, J. C. F., & de Groot, S. (2012). The effects of control-display gain on performance of race car drivers in an isometric braking task. Journal of Sports Sciences, 30(16), 1747–1756. doi:10.1080/02640414.2012.713978
  • Diamond, J. S., Nashed, J. Y., Johansson, R. S., Wolpert, D. M., & Flanagan, J. R. (2015). Rapid visuomotor corrective responses during transport of hand-held objects incorporate novel object dynamics. Journal of Neuroscience, 35(29), 10572–10580. doi:10.1523/JNEUROSCI.1376-15.2015
  • Elliott, D., Lyons, J., & Dyson, K. (1997). Rescaling an acquired discrete aiming movement: Specific or general motor learning? Human Movement Science, 16(1), 81–96. doi:10.1016/S0167-9457(96)00041-3
  • Flanagan, J. R., & Wing, A. M. (1995). The stability of precision grip forces during cyclic arm movements with a hand-held load. Experimental Brain Research, 105(3), 455–464. doi:10.1007/BF00233045
  • Flanagan, J. R., & Wing, A. M. (1997). The role of internal models in motion planning and control: Evidence from grip force adjustments during movements of hand-held loads. The Journal of Neuroscience, 17(4), 1519–1528. doi:10.1007/s00221-008-1691-3
  • Gerisch, H., Staude, G., Wolf, W., & Bauch, G. (2013). A three-component model of the control error in manual tracking of continuous random signals. Human Factors: The Journal of the Human Factors and Ergonomics Society, 55(5), 985–1000. doi:10.1177/0018720813480387
  • Gordon, A. M., Forssberg, H., Johansson, R. S., & Westling, G. (1991). Visual size cues in the programming of manipulative forces during precision grip. Experimental Brain Research, 83(3), 477–482. doi:10.1007/BF00229824
  • Grover, F., Lamb, M., Bonnette, S., Silva, P. L., Lorenz, T., & Riley, M. A. (2018). Intermittent coupling between grip force and load force during oscillations of a hand-held object. Experimental Brain Research, 236(10), 2531–2544. doi:10.1007/s00221-018-5315-2
  • Grover, F. M., Nalepka, P., Silva, P. L., Lorenz, T., & Riley, M. A. (2019). Variable and intermittent grip force control in response to differing load force dynamics. Experimental Brain Research, 237(3), 687–703. doi:10.1007/s00221-018-5451-8
  • Jenkins, W. L., & Connor, M. B. (1949). Some design factors in making settings on a linear scale. Journal of Applied Psychology, 33(4), 395–409. doi:10.1037/h0056573
  • Johansson, R. S., & Westling, G. (1984). Roles of glabrous skin receptors and sensorimotor memory in automatic control of precision grip when lifting rougher or more slippery objects. Experimental Brain Research, 56(3), 550–564. doi:10.1109/WHC.2013.6548481
  • Johansson, R. S., & Westling, G. (1987). Signals in tactile afferents from the fingers eliciting adaptive motor responses during precision grip. Experimental Brain Research, 66(1), 141–154. doi:10.1007/BF00236210
  • Kawato, M. (1999). Internal models for motor control and trajectory planning. Current Opinion in Neurobiology, 9(6), 718–727. doi:10.1016/S0959-4388(99)00028-8
  • Marwan, N., & Kurths, J. (2002). Nonlinear analysis of bivariate data with cross recurrence plots. Physics Letters A, 302(5–6), 299–307. doi:10.1016/S0375-9601(02)01170-2
  • Marwan, N., Wessel, N., Meyerfeldt, U., Schirdewan, A., & Kurths, J. (2002). Recurrence-plot-based measures of complexity and their application to heart-rate-variability data. Physical Review E, 66(2), 1–8. doi:10.1103/PhysRevE.66.026702
  • Masin, S. C., & Crestoni, L. (1988). Experimental demonstration of the sensory basis of the size-weight illusion. Perception & Psychophysics, 44(4), 309–312. doi:10.3758/BF03210411
  • Miall, R. C., & Wolpert, D. M. (1996). Forward models for physiological motor control. Neural Networks, 9(8), 1265–1279. doi:10.1016/S0893-6080(96)00035-4
  • Nowak, D. A., Glasauer, S., & Hermsdörfer, J. (2003). Grip force efficiency in long-term deprivation of somatosensory feedback. NeuroReport, 14(14), 1803–1807. doi:10.1097/00001756-200310060-00009
  • Nowak, D. A., & Hermsdörfer, J. (2003). Selective deficits of grip force control during object manipulation in patients with reduced sensibility of the grasping digits. Neuroscience Research, 47(1), 65–72. doi:10.1016/S0168-0102(03)00182-2
  • Nowak, D. A., & Hermsdörfer, J. (2005). Grip force behavior during object manipulation in neurological disorders: Toward an objective evaluation of manual performance deficits. Movement Disorders, 20(1), 11–25. doi:10.1002/mds.20299
  • Nowak, D. A., Hermsdörfer, J., Glasauer, S., Philipp, J., Meyer, L., & Mai, N. (2001). The effects of digital anaesthesia on predictive grip force adjustments during vertical movements of a grasped object. European Journal of Neuroscience, 14(4), 756–762. doi:10.1046/j.0953-816x.2001.01697.x
  • Nowak, D. A., Hermsdörfer, J., Marquardt, C., & Fuchs, H. H. (2002). Grip and load force coupling during discrete vertical arm movements with a grasped object in cerebellar atrophy. Experimental Brain Research, 145(1), 28–39. doi:10.1007/s00221-002-1079-8
  • Nowak, D. A., Hermsdörfer, J., & Topka, H. (2003). Deficits of predictive grip force control during object manipulation in acute stroke. Journal of Neurology, 250(7), 850–860. doi:10.1007/s00415-003-1095-z
  • Sarlegna, F. R., Baud-Bovy, G., & Danion, F. (2010). Delayed visual feedback affects both manual tracking and grip force control when transporting a handheld object. Journal of Neurophysiology, 104(2), 641–653. doi:10.1152/jn.00174.2010
  • Streit, M., Shockley, K., Morris, A. W., & Riley, M. A. (2007). Rotational kinematics influence multimodal perception of heaviness. Psychonomic Bulletin & Review, 14(2), 363–367. doi:10.3758/BF03194078
  • Streit, M., Shockley, K., & Riley, M. A. (2007). Rotational inertia and multimodal heaviness perception. Psychonomic Bulletin & Review, 14(5), 1001–1006. doi:10.3758/BF03194135
  • Trulla, L. L., Giuliani, A., Zbilut, J. P., & Webber, C. L. (1996). Recurrence quantification analysis of the logistic equation with transients. Physics Letters A, 223(4), 255–260. doi:10.1016/S0375-9601(96)00741-4
  • van Polanen, V., Tibold, R., Nuruki, A., & Davare, M. (2019). Visual delay affects force scaling and weight perception when lifting objects in virtual reality. Journal of Neurophysiology, 121(4), 1398–1409. doi:10.1152/jn.00396.2018
  • Webber, Jr., C. L., & Marwan, N. (Eds.). (2015). Recurrence quantification analysis: Theory and best practices. New York, NY: Springer. doi:10.1007/978-3-319-07155-8
  • Wolpert, D. M., Miall, R. C., Winter, J. L., & Stein, J. F. (1992). Evidence for an error deadzone in compensatory tracking. Journal of Motor Behavior, 24(4), 299–308. doi:10.1080/00222895.1992.9941626

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.