401
Views
6
CrossRef citations to date
0
Altmetric
Research Articles

Analysis of the Movement-Inducing Effects of Music through the Fractality of Head Sway during Standstill

ORCID Icon, & ORCID Icon
Pages 734-749 | Received 01 Jul 2019, Accepted 17 Oct 2019, Published online: 12 Nov 2019

References

  • Alves, L. G., Winter, P. B., Ferreira, L. N., Brielmann, R. M., Morimoto, R. I., & Amaral, L. A. (2017). Long-range correlations and fractal dynamics in C. elegans: Changes with aging and stress. Physical Review E, 96(2), 022417. doi:10.1103/PhysRevE.96.022417
  • Balasubramaniam, R., & Wing, A. M. (2002). The dynamics of standing balance. Trends in Cognitive Sciences, 6(12), 531–536. doi:10.1016/S1364-6613(02)02021-1
  • Bassingthwaighte, J. B., Liebovitch, L. S., & West, B. J. (2013). Fractal physiology. New York: Springer-Verlag.
  • Blázquez, M. T., Anguiano, M., de Saavedra, F. A., Lallena, A. M., & Carpena, P. (2009). Study of the human postural control system during quiet standing using detrended fluctuation analysis. Physica A: Statistical Mechanics and Its Applications, 388(9), 1857–1866. doi:10.1016/j.physa.2009.01.001
  • Blood, A. J., & Zatorre, R. J. (2001). Intensely pleasurable responses to music correlate with activity in brain regions implicated in reward and emotion. Proceedings of the National Academy of Sciences, 98(20), 11818–11823.
  • Burger, B., & Toiviainen, P. (2013). Mocap toolbox-a matlab toolbox for computational analysis of movement data. In: 10th Sound and Music Computing Conference, SMC 2013, Stockholm, Sweden, Logos Verlag Berlin.
  • Burger, B., London, J., Thompson, M. R., & Toiviainen, P. (2018). Synchronization to metrical levels in music depends on low-frequency spectral components and tempo. Psychological Research, 82(6), 1195–1211. doi:10.1007/s00426-017-0894-2
  • Burger, B., Thompson, M. R., Luck, G., Saarikallio, S., & Toiviainen, P. (2013). Influences of rhythm-and timbre-related musical features on characteristics of music-induced movement. Frontiers in Psychology, 4, 183. doi:10.3389/fpsyg.2013.00183
  • Burger, B., & Toiviainen, P. (2018). Embodiment in electronic dance music: Effects of musical content and structure on body movement. Musicae Scientiae.
  • Câmara, G. S., & Danielsen, A. (2018). Groove. In A. Rehding & S. Rings (Eds.), The Oxford handbook of critical concepts in music theory. Oxford: Oxford University Press.
  • Collins, J. J., & De Luca, C. J. (1993). Open-loop and closed-loop control of posture: A random-walk analysis of center-of-pressure trajectories. Experimental Brain Research, 95(2), 308–318. doi:10.1007/BF00229788
  • Dixon, J. A., Holden, J. G., Mirman, D., & Stephen, D. G. (2012). Multifractal dynamics in the emergence of cognitive structure. Topics in Cognitive Science, 4(1), 51–62. doi:10.1111/j.1756-8765.2011.01162.x
  • Duarte, M., & Sternad, D. (2008). Complexity of human postural control in young and older adults during prolonged standing. Experimental Brain Research, 191(3), 265–276. doi:10.1007/s00221-008-1521-7
  • Duarte, M., & Zatsiorsky, V. M. (2002). Effects of body lean and visual information on the equilibrium maintenance during stance. Experimental Brain Research, 146(1), 60–69. doi:10.1007/s00221-002-1154-1
  • Feder, J. (2013). Fractals. New York: Springer US.
  • Freitas, S. M., Wieczorek, S. A., Marchetti, P. H., & Duarte, M. (2005). Age-related changes in human postural control of prolonged standing. Gait & Posture, 22(4), 322–330. doi:10.1016/j.gaitpost.2004.11.001
  • Goldberger, A. L., Peng, C. K., & Lipsitz, L. A. (2002). What is physiologic complexity and how does it change with aging and disease? Neurobiology of Aging, 23(1), 23–26. doi:10.1016/S0197-4580(01)00266-4
  • Gonzalez Sanchez, V. E., Zelechowska, A., & Jensenius, A. R. (2018). Correspondences between music and involuntary human micromotion during standstill. Frontiers in Psychology, 9. doi:10.3389/fpsyg.2018.01382
  • Hodges, D. A. (2009). Bodily responses to music. The Oxford handbook of music psychology. In S. Hallam, I. Cross & M. Thaut (Eds.), The Oxford handbook of music psychology. Oxford: Oxford University Press.
  • Honing, H., Merchant, H., Háden, G. P., Prado, L., & Bartolo, R. (2012). Rhesus monkeys (Macaca mulatta) detect rhythmic groups in music, but not the beat. PLoS One, 7(12), e51369. doi:10.1371/journal.pone.0051369
  • Janata, P., Tomic, S. T., & Haberman, J. M. (2012). Sensorimotor coupling in music and the psychology of the groove. Journal of Experimental Psychology: General, 141(1), 54–75. doi 10.1037/a0024208
  • Jensenius, A. R., Nymoen, K., Skogstad, S., & Voldsund, A. (2012). A study of the noise-level in two infrared marker-based motion capture systems. In Proceedings of the Sound and Music Computing Conference, Copenhagen, pp 258–263.
  • Jensenius, A. R., Zelechowska, A., & Gonzalez Sanchez, V. E. (2017). The musical influence on people’s micromotion when standing still in groups. In Proceedings of the SMC Conferences, Aalto University, (pp. 195–200). Espoo, Finland: SMC.
  • Kaplan, D., & Glass, L. (2012). Understanding nonlinear dynamics. New York: Springer-Verlag.
  • Kello, C. T., Beltz, B. C., Holden, J. G., & Van Orden, G. C. (2007). The emergent coordination of cognitive function. Journal of Experimental Psychology: General, 136(4), 551. doi:10.1037/0096-3445.136.4.551
  • Kelty-Stephen, D. G., & Dixon, J. A. (2014). Interwoven fluctuations during intermodal perception: Fractality in head sway supports the use of visual feedback in haptic perceptual judgments by manual wielding. Journal of Experimental Psychology: Human Perception and Performance, 40(6), 2289–2309. doi:10.1037/a0038159
  • Kilchenmann, L., & Senn, O. (2015). Microtiming in swing and funk affects the body movement behavior of music expert listeners. Frontiers in Psychology, 6, 1232. doi:10.3389/fpsyg.2015.01232
  • Lartillot, O., Toiviainen, P., & Eerola, T. (2008). A matlab toolbox for music information retrieval. In Data analysis, machine learning and applications: Proceedings of the 31st Annual Conference of the Gesellschaft für Klassifikation e.V., Albert-Ludwigs-Universität Freiburg, Freiburg, Germany, Springer, pp. 261–268, March 7–9, 2007.
  • Leman, M. (2008). Embodied music cognition and mediation technology. Cambridge, MA: MIT Press, oCLC: ocm74915535.
  • Lesaffre M., Maes P. J., & Leman M. (Eds) (2017). The Routledge companion to embodied music interaction (1st ed.). New York, NY: Routledge.
  • Liang, H., Beerse, M., Ke, X., & Wu, J. (2017). Effect of whole-body vibration on center-of-mass movement during standing in children and young adults. Gait & Posture, 54, 148–153. doi:10.1016/j.gaitpost.2017.03.005
  • Lipsitz, L. A. (2004). Physiological complexity, aging, and the path to frailty. Science of Aging Knowledge Environment, 2004(16), pe16. doi:10.1126/sageke.2004.16.pe16
  • Madison, G. (2006). Experiencing groove induced by music: Consistency and phenomenology. Music Perception, 24(2), 201–208. doi:10.1525/mp.2006.24.2.201
  • Madison, G., Gouyon, F., Ullén, F., & Hörnström, K. (2011). Modeling the tendency for music to induce movement in humans: First correlations with low-level audio descriptors across music genres. Journal of Experimental Psychology: Human Perception and Performance, 37(5), 1578–1594. doi:10.1037/a0024323
  • Maes, P. J., Leman, M., Palmer, C., & Wanderley, M. (2014). Action-based effects on music perception. Frontiers in Psychology, 4, 1008. doi:10.3389/fpsyg.2013.01008
  • Matthews, T. E., Witek, M. A., Heggli, O. A., Penhune, V. B., & Vuust, P. (2019). The sensation of groove is affected by the interaction of rhythmic and harmonic complexity. PLoS One, 14(1), e0204539. doi:10.1371/journal.pone.0204539
  • McNevin, N. H., & Wulf, G. (2002). Attentional focus on supra-postural tasks affects postural control. Human Movement Science, 21(2), 187–202. doi:10.1016/S0167-9457(02)00095-7
  • Nymoen, K., Godøy, R. I., Jensenius, A. R., & Torresen, J. (2013). Analyzing correspondence between sound objects and body motion. ACM Transactions on Applied Perception, 10(2), 1–22. doi 10.1145/2465780.2465783
  • Peng, C. K., Buldyrev, S. V., Havlin, S., Simons, M., Stanley, H. E., & Goldberger, A. L. (1994). Mosaic organization of DNA nucleotides. Physical Review E, 49(2), 1685. doi:10.1103/PhysRevE.49.1685
  • Perlovsky, L. (2015). Origin of music and embodied cognition. Frontiers in Psychology, 6. doi 10.3389/fpsyg.2015.00538.
  • Phillips-Silver, J., & Trainor, L. J. (2008). Vestibular influence on auditory metrical interpretation. Brain and Cognition, 67(1), 94–102. doi 10.1016/j.bandc.2007.11.007
  • Riley, M. A., Mitra, S., Stoffregen, T. A., & Turvey, M. T. (1997). Influences of body lean and vision on unperturbed postural sway. Motor Control, 1(3), 229–246. doi:10.1123/mcj.1.3.229
  • Roerdink, M., Ophoff, E. D., Peper, C. L. E., & Beek, P. J. (2008). Visual and musculoskeletal underpinnings of anchoring in rhythmic visuo-motor tracking. Experimental Brain Research, 184(2), 143–156. doi:10.1007/s00221-007-1085-y
  • Ross, J. M., Warlaumont, A. S., Abney, D. H., Rigoli, L. M., & Balasubramaniam, R. (2016). Influence of musical groove on postural sway. Journal of Experimental Psychology: Human Perception and Performance, 42(3), 308–319. doi:10.1037/xhp0000198
  • Stambolieva, K. (2011). Fractal properties of postural sway during quiet stance with changed visual and proprioceptive inputs. The Journal of Physiological Sciences, 61(2), 123–130. doi:10.1007/s12576-010-0129-4
  • Stephen, D. G., Boncoddo, R. A., Magnuson, J. S., & Dixon, J. A. (2009). The dynamics of insight: Mathematical discovery as a phase transition. Memory & Cognition, 37(8), 1132–1149. doi:10.3758/MC.37.8.1132
  • Stupacher, J., Hove, M. J., & Janata, P. (2014). Decrypt the groove: Audio features of groove and their importance for auditory-motor interactions. In Proceedings of the 7th International Conference of Students of Systematic Musicology, London, UK, SysMus ’14, p. 1.
  • Thurner, S., Mittermaier, C., Hanel, R., & Ehrenberger, K. (2000). Scaling-violation phenomena and fractality in the human posture control systems. Physical Review E, 62(3), 4018. doi:10.1103/PhysRevE.62.4018
  • Todd, N. P. (1999). Motion in music: A neurobiological perspective. Music Perception: An Interdisciplinary Journal, 17(1), 115–126. doi 10.2307/40285814.
  • Van Orden, G. C., Holden, J. G., & Turvey, M. T. (2003). Self-organization of cognitive performance. Journal of Experimental Psychology: General, 132(3), 331. doi:10.1037/0096-3445.132.3.331
  • Varela, F. J., Thompson, E., & Rosch, E. (2017). The embodied mind: Cognitive science and human experience. Cambridge, MA: MIT Press.
  • Varlet, M., Bucci, C., Richardson, M. J., & Schmidt, R. C. (2015). Informational constraints on spontaneous visuomotor entrainment. Human Movement Science, 41, 265–281. doi:10.1016/j.humov.2015.03.011
  • Varlet, M., Marin, L., Lagarde, J., & Bardy, B. G. (2011). Social postural coordination. Journal of Experimental Psychology: Human Perception and Performance, 37(2), 473–483. doi:10.1037/a0020552
  • Washburn, A., Coey, C. A., Romero, V., Malone, M., & Richardson, M. J. (2015). Interaction between intention and environmental constraints on the fractal dynamics of human performance. Cognitive Processing, 16(4), 343–350. doi:10.1007/s10339-015-0652-6
  • Wijnants, M. L. (2014). A review of theoretical perspectives in cognitive science on the presence of scaling in coordinated physiological and cognitive processes. Journal of Nonlinear Dynamics, 2014, 1–17. doi:10.1155/2014/962043
  • Witek, M. A. G., Clarke, E. F., Wallentin, M., Kringelbach, M. L., & Vuust, P. (2014). Syncopation, body-movement and pleasure in groove music. PLoS One, 9(4), e94446. doi 10.1371/journal.pone.0094446.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.