360
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Effect of Self-Controlled Practice on Neuro-Cortical Dynamics During the Processing of Visual Performance Feedback

, , , , , , & show all
Pages 632-643 | Received 01 May 2020, Accepted 27 Aug 2020, Published online: 16 Sep 2020

References

  • Aiken, C. A., Fairbrother, J. T., & Post, P. G. (2012). The effects of self-controlled video feedback on the learning of the basketball set shot. Frontiers in psychology, 3, 338. https://doi.org/10.3389/fpsyg.2012.00338
  • Ali, A., Fawver, B., Fairbrother, J. T., & Janelle, C. M. (2012). Too much of a good thing: random practice scheduling and self-control of feedback lead to unique but not additive learning benefits. Frontiers in psychology, 3, 503. https://doi.org/10.3389/fpsyg.2012.00503
  • Andrieux, M., Boutin, A., & Thon, B. (2016). Self-control of task difficulty during early practice promotes motor skill learning. Journal of motor behavior, 48 (1), 57–65.
  • Andrieux, M., Danna, J., & Thon, B. (2012). Self-control of task difficulty during training enhances motor learning of a complex coincidence-anticipation task. Research quarterly for exercise and sport, 83 (1), 27–35. https://doi.org/10.5641/027013612X13330442605133
  • Anguera, J. A., Boccanfuso, J., Rintoul, J. L., Al-Hashimi, O., Faraji, F., Janowich, J., . . . Johnston, E. (2013). Video game training enhances cognitive control in older adults. Nature, 501 (7465), 97. https://doi.org/10.1038/nature12486
  • Badami, R., Vaez Mousavi, M., Wulf, G., & Namazizadeh, M. (2012). Feedback about more accurate versus less accurate trials: Differential effects on self-confidence and activation. Research Quarterly for Exercise and Sport, 83(2), 196–203. https://doi.org/10.5641/027013612800745275
  • Bandura, A., & Schunk, D. H. (1981). Cultivating competence, self-efficacy, and intrinsic interest through proximal self-motivation. Journal of personality and social psychology, 41(3), 586. https://doi.org/10.1037/0022-3514.41.3.586
  • Barulli, D., & Stern, Y. (2013). Efficiency, capacity, compensation, maintenance, plasticity: emerging concepts in cognitive reserve. Trends in cognitive sciences, 17(10), 502–509. https://doi.org/10.1016/j.tics.2013.08.012
  • Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B (Methodological), 57 (1), 289–300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
  • Berka, C., Behneman, A., Kintz, N., Johnson, R., & Raphael, G. (2010). Accelerating training using interactive neuro- educational technologies: Applications to archery, golf and rifle marksmanship. The International Journal of Sport and Society, 1 (4), 87–104. https://doi.org/10.18848/2152-7857/CGP/v01i04/54040
  • Blanca, M. J., Alarcón, R., Arnau, J., Bono, R., & Bendayan, R. (2017). Non-normal data: Is ANOVA still a valid option? Psicothema, 29 (4), 552–557.
  • Chiviacowsky, S., & Wulf, G. (2002). Self-controlled feedback: Does it enhance learning because performers get feedback when they need it? Research Quarterly for Exercise and Sport, 73(4), 408–415. https://doi.org/10.1080/02701367.2002.10609040
  • Danckert, J. A., & Allman, A.-A. A. (2005). Time flies when you’re having fun: Temporal estimation and the experience of boredom. Brain and Cognition, 59 (3), 236–245. https://doi.org/10.1016/j.bandc.2005.07.002
  • De Pisapia, N., Slomski, J. A., & Braver, T. S. (2006). Functional specializations in lateral prefrontal cortex associated with the integration and segregation of information in working memory. Cerebral Cortex, 17 (5), 993–1006. https://doi.org/10.1093/cercor/bhl010
  • Deeny, S. P., Haufler, A. J., Saffer, M., & Hatfield, B. D. (2009). Electroencephalographic coherence during visuomotor performance: A comparison of cortico-cortical communication in experts and novices. Journal of Motor Behavior, 41 (2), 106–116. https://doi.org/10.3200/JMBR.41.2.106-116
  • Deeny, S. P., Hillman, C. H., Janelle, C. M., & Hatfield, B. D. (2003). Cortico-cortical communication and superior performance in skilled marksmen: An EEG coherence analysis. Journal of Sport and Exercise Psychology, 25 (2), 188–204. https://doi.org/10.1123/jsep.25.2.188
  • Doppelmayr, M., Klimesch, W., Pachinger, T., & Ripper, B. (1998). Individual differences in brain dynamics: important implications for the calculation of event-related band power. Biological Cybernetics, 79 (1), 49–57. https://doi.org/10.1007/s004220050457
  • Duda, J. L. (1989). Relationship between task and ego orientation and the perceived purpose of sport among high school athletes. Journal of Sport and Exercise Psychology, 11, 318–335. https://doi.org/10.1123/jsep.11.3.318
  • Fisher, S. L., & Ford, J. K. (1998). Differential effects of learner effort and goal orientation on two learning outcomes. Personnel Psychology, 51 (2), 397–420. https://doi.org/10.1111/j.1744-6570.1998.tb00731.x
  • Foxe, J. J., & Snyder, A. C. (2011). The role of alpha-band brain oscillations as a sensory suppression mechanism during selective attention. Frontiers in Psychology, 2, 154. https://doi.org/10.3389/fpsyg.2011.00154
  • Fuster, J. M., & Bressler, S. L. (2012). Cognit activation: a mechanism enabling temporal integration in working memory. Trends in Cognitive Sciences, 16 (4), 207–218. https://doi.org/10.1016/j.tics.2012.03.005
  • Gentili, R. J., Bradberry, T. J., Oh, H., Hatfield, B. D., & Contreras Vidal, J. L. (2011). Cerebral cortical dynamics during visuomotor transformation: Adaptation to a cognitive‐motor executive challenge. Psychophysiology, 48 (6), 813–824. https://doi.org/10.1111/j.1469-8986.2010.01143.x
  • Gentili, R. J., Shewokis, P. A., Ayaz, H., & Contreras-Vidal, J. L. (2013). Functional near-infrared spectroscopy-based correlates of prefrontal cortical dynamics during a cognitive-motor executive adaptation task. Frontiers in Human Neuroscience, 7:277. https://doi.org/10.3389/fnhum.2013.00277
  • Grand, K. F., Bruzi, A. T., Dyke, F. B., Godwin, M. M., Leiker, A. M., Thompson, A. G., . . . Miller, M. W. (2015). Why self-controlled feedback enhances motor learning: Answers from electroencephalography and indices of motivation. Human Movement Science, 43, 23–32. https://doi.org/10.1016/j.humov.2015.06.013
  • Grand, K. F., Daou, M., Lohse, K. R., & Miller, M. W. (2017). Investigating the mechanisms underlying the effects of an incidental choice on motor learning. Journal of Motor Learning and Development, 5 (2), 207–226. https://doi.org/10.1123/jmld.2016-0041
  • Groen, Y., Wijers, A. A., Mulder, L. J., Minderaa, R. B., & Althaus, M. (2007). Physiological correlates of learning by performance feedback in children: A study of EEG event-related potentials and evoked heart rate. Biological Psychology, 76 (3), 174–187. https://doi.org/10.1016/j.biopsycho.2007.07.006
  • Hajcak, G., Moser, J. S., Holroyd, C. B., & Simons, R. F. (2007). It's worse than you thought: The feedback negativity and violations of reward prediction in gambling tasks. Psychophysiology, 44 (6), 905–912. https://doi.org/10.1111/j.1469-8986.2007.00567.x
  • Hancock, G. R., Butler, M. S., & Fischman, M. G. (1995). On the problem of two-dimensional error scores: Measures and analyses of accuracy, bias, and consistency. Journal of Motor Behavior, 27 (3), 241–250. https://doi.org/10.1080/00222895.1995.9941714
  • Hartman, J. M. (2007). Self-controlled use of a perceived physical assistance device during a balancing task. Perceptual and Motor Skills, 104 (3), 1005–1016. https://doi.org/10.2466/pms.104.3.1005-1016
  • Hatfield, B. D., & Hillman, C. H. (2001). The psychophysiology of sport. In R. N. Singer, H. A. Hausenblas & C. M. Janelle (Eds.), The handbook of research on sport psychology (2nd ed., pp. 319–339). John Wiley.
  • Hatfield, B. D., Landers, D. M., & Ray, W. J. (1984). Cognitive processes during self-paced motor performance: An electroencephalographic profile of skilled marksmen. Journal of Sport Psychology, 6 (1), 42–59. https://doi.org/10.1123/jsp.6.1.42
  • Haufler, A. J., Spalding, T. W., Santa Maria, D., & Hatfield, B. D. (2000). Neuro-cognitive activity during a self-paced visuospatial task: comparative EEG profiles in marksmen and novice shooters. Biological Psychology, 53 (2), 131–160. https://doi.org/10.1016/S0301-0511(00)00047-8
  • Janelle, C. M., Hillman, C. H., Apparies, R. J., Murray, N. P., Meili, L., Fallon, E. A., & Hatfield, B. D. (2000). Expertise differences in cortical activation and gaze behavior during rifle shooting. Journal of Sport and Exercise Psychology, 22 (2), 167–182. https://doi.org/10.1123/jsep.22.2.167
  • Janelle, C. M., Kim, J., & Singer, R. N. (1995). Subject-controlled performance feedback and learning of a closed motor skill. Perceptual and Motor Skills, 81 (2), 627–634. https://doi.org/10.2466/pms.1995.81.2.627
  • Jaquess, K. J., Lu, Y., Iso-Ahola, S. E., Zhang, J., Gentili, R. J., & Hatfield, B. D. (2019). Self-controlled practice to achieve neuro-cognitive engagement: Underlying brain processes to enhance cognitive-motor learning and performance. Journal of Motor Behavior, 52, 1–14. https://doi.org/10.1080/00222895.2019.1651245
  • Jensen, O., & Mazaheri, A. (2010). Shaping functional architecture by oscillatory alpha activity: Gating by inhibition. Frontiers in Human Neuroscience, 4, 186. https://doi.org/10.3389/fnhum.2010.00186
  • Jensen, O., & Tesche, C. D. (2002). Frontal theta activity in humans increases with memory load in a working memory task. European Journal of Neuroscience, 15 (8), 1395–1399. https://doi.org/10.1046/j.1460-9568.2002.01975.x
  • Jiang, Y., & Chun, M. M. (2001). Selective attention modulates implicit learning. The Quarterly Journal of Experimental Psychology: Section A, 54 (4), 1105–1124. https://doi.org/10.1080/713756001
  • Kahana, M. J., Seelig, D., & Madsen, J. R. (2001). Theta returns. Current Opinion in Neurobiology, 11 (6), 739–744. https://doi.org/10.1016/S0959-4388(01)00278-1
  • Klimesch, W., Sauseng, P., & Hanslmayr, S. (2007). EEG alpha oscillations: The inhibition–timing hypothesis. Brain Research Reviews, 53 (1), 63–88. https://doi.org/10.1016/j.brainresrev.2006.06.003
  • Krakauer, J. W., & Mazzoni, P. (2011). Human sensorimotor learning: Adaptation, skill, and beyond. Current Opinion in Neurobiology, 21 (4), 636–644.
  • Lee, K., Oh, Y., Izawa, J., & Schweighofer, N. (2018). Sensory prediction errors, not performance errors, update memories in visuomotor adaptation. Scientific Reports, 8, 16483.
  • Leiker, A. M., Bruzi, A. T., Miller, M. W., Nelson, M., Wegman, R., & Lohse, K. R. (2016). The effects of autonomous difficulty selection on engagement, motivation, and learning in a motion-controlled video game task. Human Movement Science, 49, 326–335.
  • Leiker, A. M., Pathania, A., Miller, M. W., & Lohse, K. R. (2018). Exploring the neurophysiological effects of self-controlled practice in motor skill learning. Journal of Motor Learning and Development, 7, 1–36.
  • Lewthwaite, R., & Wulf, G. (2017). Optimizing motivation and attention for motor performance and learning. Current Opinion in Psychology, 16, 38–42.
  • Lohse, K., Wadden, K., Boyd, L., & Hodges, N. (2014). Motor skill acquisition across short and long time scales: A meta-analysis of neuroimaging data. Neuropsychologia, 59, 130–141.
  • Lohse, K. R., Boyd, L. A., & Hodges, N. J. (2016). Engaging environments enhance motor skill learning in a computer gaming task. Journal of Motor Behavior, 48 (2), 172–182.
  • Mathewson, K., Lleras, A., Beck, D., Fabiani, M., Ro, T., & Gratton, G. (2011). Pulsed out of awareness: EEG alpha oscillations represent a pulsed-inhibition of ongoing cortical processing. Frontiers in Psychology, 2 (99). https://doi.org/10.3389/fpsyg.2011.00099
  • Mizuhara, H., & Yamaguchi, Y. (2007). Human cortical circuits for central executive function emerge by theta phase synchronization. Neuroimage, 36 (1), 232–244.
  • Myers, N. D., & Feltz, D. L. (2007). From self-efficacy to collective efficacy in sport. In Handbook of sport psychology (3rd ed., pp. 799–819). John Wiley & Sons.
  • Pathania, A., Leiker, A. M., Euler, M., Miller, M. W., & Lohse, K. R. (2019). Challenge, motivation, and effort: Neural and behavioral correlates of self-control of difficulty during practice. Biological Psychology, 141, 52–63. https://doi.org/10.1016/j.biopsycho.2019.01.001
  • Payne, L., & Kounios, J. (2009). Coherent oscillatory networks supporting short-term memory retention. Brain Research, 1247, 126–132. https://doi.org/10.1016/j.brainres.2008.09.095
  • Prabhakaran, V., Narayanan, K., Zhao, Z., & Gabrieli, J. (2000). Integration of diverse information in working memory within the frontal lobe. Nature Neuroscience, 3 (1), 85. https://doi.org/10.1038/71156
  • Rehder, B., & Hoffman, A. B. (2005). Eyetracking and selective attention in category learning. Cognitive Psychology, 51 (1), 1–41. https://doi.org/10.1016/j.cogpsych.2004.11.001
  • Ritchie, D., & Karge, B. D. (1996). Making information memorable: Enhanced knowledge retention and recall through the elaboration process. Preventing School Failure: Alternative Education for Children and Youth, 41 (1), 28–33. https://doi.org/10.1080/1045988X.1996.9944681
  • Ryu, D., Kim, S., Abernethy, B., & Mann, D. L. (2013). Guiding attention aids the acquisition of anticipatory skill in novice soccer goalkeepers. Research Quarterly for Exercise and Sport, 84 (2), 252–262. https://doi.org/10.1080/02701367.2013.784843
  • Sauseng, P., Griesmayr, B., Freunberger, R., & Klimesch, W. (2010). Control mechanisms in working memory: a possible function of EEG theta oscillations. Neuroscience and Biobehavioral Reviews, 34 (7), 1015–1022. https://doi.org/10.1016/j.neubiorev.2009.12.006
  • Sauseng, P., Klimesch, W., Schabus, M., & Doppelmayr, M. (2005). Fronto-parietal EEG coherence in theta and upper alpha reflect central executive functions of working memory. International Journal of Psychophysiology, 57 (2), 97–103. https://doi.org/10.1016/j.ijpsycho.2005.03.018
  • Sederberg, P. B., Kahana, M. J., Howard, M. W., Donner, E. J., & Madsen, J. R. (2003). Theta and gamma oscillations during encoding predict subsequent recall. Journal of Neuroscience, 23 (34), 10809–10814. https://doi.org/10.1523/JNEUROSCI.23-34-10809.2003
  • Tanaka, M., & Watanabe, Y. (2011). Neural compensation mechanisms to regulate motor output during physical fatigue. Brain Research, 1395, 46–52. https://doi.org/10.1016/j.brainres.2011.04.041
  • Thissen, D., Steinberg, L., & Kuang, D. (2002). Quick and easy implementation of the Benjamini-Hochberg procedure for controlling the false positive rate in multiple comparisons. Journal of Educational and Behavioral Statistics, 27 (1), 77–83. https://doi.org/10.3102/10769986027001077
  • Wulf, G. (2007). Self-controlled practice enhances motor learning: Implications for physiotherapy. Physiotherapy, 93 (2), 96–101. https://doi.org/10.1016/j.physio.2006.08.005
  • Wulf, G., & Lewthwaite, R. (2010). Effortless motor learning? An external focus of attention enhances movement effectiveness and efficiency. In B. J. Bruya, Effortless attention: A new perspective in attention and action (pp. 75–101). MIT Press.
  • Wulf, G., & Lewthwaite, R. (2016). Optimizing performance through intrinsic motivation and attention for learning: The OPTIMAL theory of motor learning. Psychonomic Bulletin and Review, 23 (5), 1382–1414. https://doi.org/10.3758/s13423-015-0999-9
  • Wulf, G., Raupach, M., & Pfeiffer, F. (2005). Self-controlled observational practice enhances learning. Research Quarterly for Exercise and Sport, 76 (1), 107–111. https://doi.org/10.1080/02701367.2005.10599266
  • Wulf, G., & Toole, T. (1999). Physical assistance devices in complex motor skill learning: Benefits of a self-controlled practice schedule. Research Quarterly for Exercise and Sport, 70 (3), 265–272. https://doi.org/10.1080/02701367.1999.10608045
  • Yeo, G. B., & Neal, A. (2004). A multilevel analysis of effort, practice, and performance: Effects of ability, conscientiousness, and goal orientation. Journal of Applied Psychology, 89 (2), 231. https://doi.org/10.1037/0021-9010.89.2.231
  • Zanolie, K., Teng, S., Donohue, S. E., van Duijvenvoorde, A. C., Band, G. P., Rombouts, S. A., & Crone, E. A. (2008). Switching between colors and shapes on the basis of positive and negative feedback: An fMRI and EEG study on feedback-based learning. Cortex, 44 (5), 537–547. https://doi.org/10.1016/j.cortex.2007.11.005
  • Zhu, X., Lee, Y., Simon, H. A., & Zhu, D. (1996). Cue recognition and cue elaboration in learning from examples. Proceedings of the National Academy of Sciences, 93 (3), 1346–1351. https://doi.org/10.1073/pnas.93.3.1346
  • Zimmerman, B. J. (2000). Self-efficacy: An essential motive to learn. Contemporary Educational Psychology, 25 (1), 82–91. https://doi.org/10.1006/ceps.1999.1016

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.