331
Views
6
CrossRef citations to date
0
Altmetric
Research Articles

Perceived effort for reaching is associated with self-reported fatigue

, , &
Pages 14-26 | Received 03 Sep 2020, Accepted 31 Dec 2020, Published online: 19 Jan 2021

References

  • Abbiss, C. R., Peiffer, J. J., Meeusen, R., & Skorski, S. (2015). Role of ratings of perceived exertion during self-paced exercise: What are we actually measuring? Sports Medicine, 45(9), 1235–1243. https://doi.org/10.1007/s40279-015-0344-5
  • Blissett, S., Sibbald, M., Kok, E., & van Merrienboer, J. (2018). Optimizing self-regulation of performance: is mental effort a cue? Advances in Health Science Education: Theory and Practice, 23(5), 891–898. https://doi.org/10.1007/s10459-018-9838-x
  • Borg, G., & Dahlstrom, H. (1962). The reliability and validity of a physical work test. Acta Physiologica Scandinavica, 55, 353–361. https://doi.org/10.1111/j.1748-1716.1962.tb02449.x
  • Chen, S. Y. (2012). The influence of self-efficacy on recovery of spontaneous arm use in hemiparetic stroke. University of Southern California.
  • Claros-Salinas, D., Dittmer, N., Neumann, M., Sehle, A., Spiteri, S., Willmes, K., Schoenfeld, M. A., & Dettmers, C. (2013). Induction of cognitive fatigue in MS patients through cognitive and physical load. Neuropsychological Rehabilitation, 23(2), 182–201. https://doi.org/10.1080/09602011.2012.726925
  • Collins, K. C., Kennedy, N. C., Clark, A., & Pomeroy, V. M. (2018). Kinematic components of the reach-to-target movement after stroke for focused rehabilitation interventions: Systematic review and meta-analysis [systematic review]. Frontiers in Neurology, 9(472). https://doi.org/10.3389/fneur.2018.00472
  • Cruz, E. G., & Kamper, D. G. (2006). Kinematics of point-to-point finger movements. Experimental Brain Research, 174(1), 29–34. https://doi.org/10.1007/s00221-006-0416-8
  • De Doncker, W., Dantzer, R., Ormstad, H., & Kuppuswamy, A. (2018). Mechanisms of poststroke fatigue. Journal of Neurology, Neurosurgery and Psychiatry, 89(3), 287–293. https://doi.org/10.1136/jnnp-2017-316007
  • de Morree, H. M., Klein, C., & Marcora, S. M. (2012). Perception of effort reflects central motor command during movement execution. Psychophysiology, 49(9), 1242–1253. https://doi.org/10.1111/j.1469-8986.2012.01399.x
  • Doherty, M., Smith, P. M., Hughes, M. G., & Collins, D. (2001). Rating of perceived exertion during high-intensity treadmill running. Medicine & Science in Sports & Exercise, 33(11), 1953–1958. https://doi.org/10.1097/00005768-200111000-00023
  • Dunn, T. L., Inzlicht, M., & Risko, E. F. (2019). Anticipating cognitive effort: Roles of perceived error-likelihood and time demands. Psychological Research, 83(5), 1033–1056. https://doi.org/10.1007/s00426-017-0943-x
  • Feghhi, I., & Rosenbaum, D. A. (2020). Effort avoidance is not simply error avoidance. Psychological Research. https://doi.org/10.1007/s00426-020-01331-2.
  • Fitts, P. M. (1954). The information capacity of the human motoro system in controlling the amplitude of movement. Journal of Experimental Psychology, 47(6), 381–391. https://doi.org/10.1037/h0055392
  • Goh, H. T., & Stewart, J. C. (2019). Poststroke fatigue is related to motor and cognitive performance: A secondary analysis. Journal of Neurologic Physical Therapy, 43(4), 233–239. https://doi.org/10.1097/NPT.0000000000000290
  • Guo, F., Sun, Y. J., & Zhang, R. H. (2017). Perceived exertion during muscle fatigue as reflected in movement-related cortical potentials: An event-related potential study. NeuroReport, 28(3), 115–122. https://doi.org/10.1097/WNR.0000000000000732
  • Hampton, S., Armstrong, G., Ayyar, M. S., & Li, S. (2014). Quantification of perceived exertion during isometric force production with the Borg scale in healthy individuals and patients with chronic stroke. Topics in Stroke Rehabilitation, 21(1), 33–39. https://doi.org/10.1310/tsr2101-33
  • Hyllegard, R., & Bories, T. L. (2008). Deliberate practice theory: Relevance, effort, and inherent enjoyment of music practice. Perceptual and Motor Skills, 107(2), 439–448. https://doi.org/10.2466/pms.107.2.439-448
  • Khalil, M. K., Mansour, M. M., & Wilhite, D. R. (2010). Evaluation of cognitive loads imposed by traditional paper-based and innovative computer-based instructional strategies. Journal of Veterinary Medical Education, 37(4), 353–357. https://doi.org/10.3138/jvme.37.4.353
  • Kool, W., McGuire, J. T., Rosen, Z. B., & Botvinick, M. M. (2010). Decision making and the avoidance of cognitive demand. Journal of Experimental Psychology: General, 139(4), 665–682. https://doi.org/10.1037/a0020198
  • Krupp, L. B., LaRocca, N. G., Muir-Nash, J., & Steinberg, A. D. (1989). The fatigue severity scale. Application to patients with multiple sclerosis and systemic lupus erythematosus. Archives of Neurology, 46(10), 1121–1123. https://doi.org/10.1001/archneur.1989.00520460115022
  • Kuppuswamy, A., Clark, E. V., Sandhu, K. S., Rothwell, J. C., & Ward, N. S. (2015). Post-stroke fatigue: A problem of altered corticomotor control? Journal of Neurology, Neurosurgery, and Psychiatry, 86(8), 902–904. https://doi.org/10.1136/jnnp-2015-310431
  • Le Mansec, Y., Perez, J., Rouault, Q., Doron, J., & Jubeau, M. (2019). Impaired performance of the smash stroke in badminton induced by muscle fatigue. International Journal of Sports Physiology and Performance, 15(1), 1–24. https://doi.org/10.1123/ijspp.2018-0697
  • Marcora, S. (2009). Perception of effort during exercise is independent of afferent feedback from skeletal muscles, heart, and lungs. Journal of Applied Physiology (1985), 106(6), 2060–2062. https://doi.org/10.1152/japplphysiol.90378.2008
  • McCrea, P. H., Eng, J. J., & Hodgson, A. J. (2002). Biomechanics of reaching: Clinical implications for individuals with acquired brain injury. Disability and Rehabilitation, 24(10), 534–541. https://doi.org/10.1080/09638280110115393
  • Miller, K. K., Combs, S. A., Van Puymbroeck, M., Altenburger, P. A., Kean, J., Dierks, T. A., & Schmid, A. A. (2013). Fatigue and pain: Relationships with physical performance and patient beliefs after stroke. Topics in Stroke Rehabilitation, 20(4), 347–355. https://doi.org/10.1310/tsr2004-347
  • Morel, P., Ulbrich, P., & Gail, A. (2017). What makes a reach movement effortful? Physical effort discounting supports common minimization principles in decision making and motor control. PLoS Biology, 15(6), e2001323. https://doi.org/10.1371/journal.pbio.2001323
  • Paas, F. G., Van Merrienboer, J. J., & Adam, J. J. (1994). Measurement of cognitive load in instructional research. Perceptual and Motor Skills, 79(1 Pt 2), 419–430. https://doi.org/10.2466/pms.1994.79.1.419
  • Penner, I. K., Raselli, C., Stocklin, M., Opwis, K., Kappos, L., & Calabrese, P. (2009). The Fatigue Scale for Motor and Cognitive Functions (FSMC): Validation of a new instrument to assess multiple sclerosis-related fatigue. Multiple Sclerosis, 15(12), 1509–1517. https://doi.org/10.1177/1352458509348519
  • Portney, L. G., & Watkins, M. P. (2015). Correlation (foundations of clinical research applications to practice) (pp. 523–538). F.A. Davis.
  • Potts, C. A., Callahan-Flintoft, C., & Rosenbaum, D. A. (2018). How do reaching and walking costs affect movement path selection? Experimental Brain Research, 236(10), 2727–2737. https://doi.org/10.1007/s00221-018-5327-y
  • Potts, C. A., Pastel, S., & Rosenbaum, D. A. (2018). How are cognitive and physical difficulty compared? Attention Perception & Psychophysics, 80(2), 500–511. https://doi.org/10.3758/s13414-017-1434-2
  • Prak, R. F., van der Naalt, J., & Zijdewind, I. (2018). Self-reported fatigue after mild traumatic brain injury is not associated with performance fatigability during a sustained maximal contraction. Frontiers in Physiology, 9, 1919. https://doi.org/10.3389/fphys.2018.01919
  • Rasouli, O., Fors, E. A., Borchgrevink, P. C., Ohberg, F., & Stensdotter, A. K. (2017). Gross and fine motor function in fibromyalgia and chronic fatigue syndrome. Journal of Pain Research, 10, 303–309. https://doi.org/10.2147/JPR.S127038
  • Rosenbaum, D. A., & Bui, B. V. (2019). Does task sustainability provide a unified measure of subjective task difficulty? Psychonomic Bulletin & Review, 26(6), 1980–1987. https://doi.org/10.3758/s13423-019-01631-8
  • Rosenbaum, D. A., & Gaydos, M. J. (2008). A method for obtaining psychophysical estimates of movement costs. Journal of Motor Behavior, 40(1), 11–17. https://doi.org/10.3200/JMBR.40.1.11-17
  • Rosenbaum, D. A., & Gregory, R. W. (2002). Development of a method for measuring movement-related effort: Biomechanical considerations and implications for Fitts' law. Experimental Brain Research, 142(3), 365–373. https://doi.org/10.1007/s00221-001-0925-4
  • Rozand, V., Lebon, F., Papaxanthis, C., & Lepers, R. (2015). Effect of mental fatigue on speed-accuracy trade-off. Neuroscience, 297, 219–230. https://doi.org/10.1016/j.neuroscience.2015.03.066
  • Sainburg, R. L., & Kalakanis, D. (2000). Differences in control of limb dynamics during dominant and nondominant arm reaching. Journal of Neurophysiology, 83(5), 2661–2675. https://doi.org/10.1152/jn.2000.83.5.2661
  • Schweighofer, N., Xiao, Y., Kim, S., Yoshioka, T., Gordon, J., & Osu, R. (2015). Effort, success, and nonuse determine arm choice. Journal of Neurophysiology, 114(1), 551–559. https://doi.org/10.1152/jn.00593.2014
  • Shenhav, A., Musslick, S., Lieder, F., Kool, W., Griffiths, T. L., Cohen, J. D., & Botvinick, M. M. (2017). Toward a rational and mechanistic account of mental effort. Annual Review of Neuroscience, 40, 99–124. https://doi.org/10.1146/annurev-neuro-072116-031526
  • Simon, A. M., Kelly, B. M., & Ferris, D. P. (2009). Sense of effort determines lower limb force production during dynamic movement in individuals with poststroke hemiparesis. Neurorehabilitation and Neural Repair, 23(8), 811–818. https://doi.org/10.1177/1545968308331163
  • Slobounov, S., Hallett, M., & Newell, K. M. (2004). Perceived effort in force production as reflected in motor-related cortical potentials. Clinical Neurophysiology, 115(10), 2391–2402. https://doi.org/10.1016/j.clinph.2004.05.021
  • Smith, M. R., Coutts, A. J., Merlini, M., Deprez, D., Lenoir, M., & Marcora, S. M. (2016). Mental fatigue impairs soccer-specific physical and technical performance. Medicine & Science in Sports & Exercise, 48(2), 267–276. https://doi.org/10.1249/MSS.0000000000000762
  • Spiteri, S., Hassa, T., Claros-Salinas, D., Dettmers, C., & Schoenfeld, M. A. (2019). Neural correlates of effort-dependent and effort-independent cognitive fatigue components in patients with multiple sclerosis. Multiple Sclerosis, 25(2), 256–266. https://doi.org/10.1177/1352458517743090
  • Stewart, J. C., Gordon, J., & Winstein, C. J. (2013). Planning and adjustments for the control of reach extent in a virtual environment. Journal of NeuroEngineering and Rehabilitation, 10, 27. https://doi.org/10.1186/1743-0003-10-27
  • Summerside, E. M., Shadmehr, R., & Ahmed, A. A. (2018). Vigor of reaching movements: Reward discounts the cost of effort. Journal of Neurophysiology, 119(6), 2347–2357. https://doi.org/10.1152/jn.00872.2017
  • Tseng, B. Y., Billinger, S. A., Gajewski, B. J., & Kluding, P. M. (2010). Exertion fatigue and chronic fatigue are two distinct constructs in people post-stroke. Stroke, 41(12), 2908–2912. https://doi.org/10.1161/STROKEAHA.110.596064
  • Verguts, T., Vassena, E., & Silvetti, M. (2015). Adaptive effort investment in cognitive and physical tasks: A neurocomputational model. Frontiers in Behavioral Neuroscience, 9, 57. https://doi.org/10.3389/fnbeh.2015.00057
  • Zenon, A., Sidibe, M., & Olivier, E. (2015). Disrupting the supplementary motor area makes physical effort appear less effortful. Journal of Neuroscience, 35(23), 8737–8744. https://doi.org/10.1523/JNEUROSCI.3789-14.2015

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.