657
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Differences in Motor Control Strategies of Jumping Tasks, as Revealed by Group and Individual Analysis

, ORCID Icon &
Pages 44-56 | Received 14 Aug 2020, Accepted 01 Feb 2021, Published online: 17 Feb 2021

References

  • Abdi, H., & Williams, L. J. (2010). An introduction and review of recent developments of PCA. Wiley Interdisciplinary Reviews: Computational Statistics, 2, 433–459.
  • Bartlett, R., Wheat, J., & Robins, M. (2007). Is movement variability important for sports biomechanists? Sports Biomechanics, 6(2), 224–243.
  • Bernstein, N. A. (1967). The co-ordination and regulation of movements. Pergamon Press.
  • Borzelli, G., Cappizzon, A., & Papa, E. (1999). Inter and intra individual variability of ground reaction forces during sit to stand with principal component analysis. Medical Engineering & Physics, 21, 235–240. https://doi.org/10.1016/S1350-4533(99)00050-8
  • Chow, J. Y., Davids, K., Button, C., & Rein, R. (2008). Dynamics of movement patterning in learning a discrete multiarticular action. Motor Control, 12(3), 219–240. https://doi.org/10.1123/mcj.12.3.219.
  • Cleather, D. J., & Bull, A. M. J. (2015). The development of a segment based musculoskeletal model of the lower limb: Introducing FreeBody. Royal Society Open Science, 2(6), 140449. https://doi.org/10.1098/rsos.140449
  • Cleather, D. J., Goodwin, J. E., and Bull, A. M. J. (2013). Inter-segmental moment analysis characterises the partial correspondence of jumping and jerking. Journal of Strength and Conditioning Research, 27, 89–100. https://doi.org/10.1519/JSC.0b013e31825037ee
  • Cushion, E. J., Warmenhoven, J., North, J. S., & Cleather, D. J. (2019). Principal component analysis reveals the proximal to distal pattern in vertical jumping is governed by two functional degrees of freedom. Frontiers in Bioengineering and Biotechnology, 7, 193. https://doi.org/10.3389/fbioe.2019.00193
  • Cushion, E. J., Warmenhoven, J., North, J. S. & Cleather, D. J. (2020). Task demand changes motor control strategies in vertical jumping. Journal of Motor Behavior, 1–12. https://doi.org/10.1080/00222895.2020.1797621
  • Daffertshofer, A., & Lamoth, C. J. C. (2004). PCA in studying coordination and variability: A Tutorial. Clinical Biomechanics (Bristol, Avon), 19, 415–428. https://doi.org/10.1016/j.clinbiomech.2004.01.005
  • Daffertshofer, A., Lamoth, C. J., Meijer, O. G., & Beek, P. J. (2004). PCA in studying coordination and variability: a tutorial. Clinical Biomechanics, 19(4), 415–428.https://doi.org/10.1016/j.clinbiomech.2004.01.005
  • Dicesare, C. A., Minai, A. A., Riley, M. A., Ford, K. R., Hewett, T. E., & Myer, G. D. (2020). Distinct coordination strategies associated with the drop vertical jump task. Medicine & Science in Sports & Exercise, 52(5), 1088–1098. https://doi.org/10.1249/MSS.0000000000002235
  • Dufek, J. S., Bates, B. T., Stergiou, N., & James, C. R. (1995). Interactive effects between group and single-subject response patterns. Human Movement Science, 14, 301–323. https://doi.org/10.1016/0167-9457(95)00013-I
  • Federolf, P., Roos, L., & Nigg, B. M. (2013). Analysis of the multi-segmental postural movement strategies utilized in bipedal, tandem and one leg stance as quantified by a principal component decomposition of marker coordinates. Journal of Biomechanics, 46(15), 2626–2633. https://doi.org/10.1016/j.neulet.2007.05.051
  • Fink, P. W., Kelso, J. A., Jirsa, V. K., & De Guzman, G. (2000). Recruitment of degrees of freedom stabilizes coordination. Journal of Experimental Psychology: Human Perception and Performance, 26(2), 671. https://doi.org/10.1037/0096-1523.26.2.671.
  • Gittoes, M. J., Irwin, G., Mullineaux, D. R., & Kerwin, D. G. (2011). Whole-body and multi-joint kinematic control strategy variability during backward rotating dismounts from beam. Journal of Sports Sciences, 29(10), 1051–1058. https://doi.org/10.1080/02640414.2011.576690
  • Hong, S. L. & Newell, K. M. (2006). Change in the organisation of degrees of freedom with learning. Journal of Motor Behavior, 38(2), 88–100. https://doi.org/10.3200/JMBR.38.2.88-100.
  • Huber, C., Federolf, P., Nüesch, C., Cattin, P. C., Friederich, N. F., & von Tscharner, V. (2013). Heel-strike in walking: Assessment of potential sources of intra- and inter-subject variability in the activation patterns of muscles stabilizing the knee joint. Journal of Biomechanics, 46(7), 1262–1268. https://doi.org/10.1016/j.jbiomech.2013.02.017
  • James, C. R. & Bates, B. T. (1997). Experimental and statistical design issues in human movement research. Measurement in Physical Education and Exercise Science, 1(1), 55–69. https://doi.org/10.1207/s15327841mpee0101_4
  • Jolliffe I. T. (2002). Graphical representation of data using principal components. In I. T. Joliffe (Ed.), Principal component analysis. Springer series in statistics (2nd ed., pp. 78–110). Springer. https://doi.org/10.1007/0-387-22440-8_5
  • Jolliffe, I. T., & Cadima, J. (2016). Principal component analysis: A review and recent developments. Philosophical Transactions Series A Mathematical, Physical, and Engineering Sciences, 374, 20150202. https://doi.org/10.1098/rsta.2015.0202
  • Ko, J. H., Han, D. W., & Newell, K. M. (2017). Skill level constrains the coordination of posture and upper-limb movement in a pistol-aiming task. Human Movement Science, 55, 255–263. https://doi.org/10.1016/j.humov.2017.08.017
  • Ko, Y., Challis, J. H., & Newell, K. M. (2003). Learning to coordinate redundant degrees of freedom in a dynamic balance task. Human Movement Science, 22, 47–66. https://doi.org/10.1016/S0167-9457(02)00177-X
  • Komar, J., Seifert, L., & Thouvarecq, R. (2015). What variability tells us about motor expertise: measurements and perspectives from a complex system approach. Movement & Sport Sciences-Science & Motricité, 89, 65–77. https://doi.org/10.1051/sm/2015020
  • Lee, I. C., Liu, Y. T., & Newell, K. M. (2016). Learning to ride a unicycle: Coordinating balance and propulsion. Journal of Motor Learning and Development, 4(2), 287–306. https://doi.org/10.1123/jmld.2015-0030.
  • Li, Z. M. (2006). Functional degrees of freedom. Motor Control, 10(4), 301–310. https://doi.org/10.1123/mcj.10.4.301
  • Li, Z. M., & Tang, J. (2007). Coordination of thumb joints during opposition. Journal of Biomechanics, 40(3), 502–510. https://doi.org/10.1016/j.jbiomech.2006.02.019
  • Majed, L., Heugas, A. M., and Siegler, I. A. (2017). Changes in movement organization and control strategies when learning a biomechanically constrained gait pattern, racewalking: a PCA study. Experimental Brain Research, 235, 931–940. https://doi.org/10.1007/s00221-016-4853-8
  • McMahon, J. J., Suchomel, T. J., Lake, J. P., & Comfort, P. (2018). Understanding the key phases of the countermovement jump force-time curve. Strength & Conditioning Journal, 40(4), 96–106.https://doi.org/10.1519/SSC.0000000000000375
  • Newell, K. M., & Corcos, D. M. (Eds.). (1993). Variability and motor control. Human Kinetics.
  • Newell, K. M., Kugler, P. N., Van Emmerik, R. E., & McDonald, P. V. (1989). Search strategies and the acquisition of coordination. In S. A. Wallace (Ed.), Perspectives on the coordination of movement (vol. 61, pp. 85–122). North-Holland.
  • Nordin, A. D., & Dufek, J. S. (2016). Neuromechanical synergies in single-leg landing reveal changes in movement control. Human Movement Science, 49, 66–78. https://doi.org/10.1016/j.humov.2016.06.007
  • Nordin, A. D., Dufek, J. S., James, R., & Bates, B. T. (2017). Classifying performer strategies in drop landing activities. Journal of Sports Sciences, 35, 1–1863. https://doi.org/10.1080/02640414.2016.1240876
  • Raffalt, P. C., Alkjaer, T., & Simonsen, E. B. (2016). Intra- and inter-subject variation in lower limb coordination during countermovement jumps in children and adults. Human Movement Science, 46, 63–77. https://doi.org/10.1016/j.humov.2015.12.004
  • Ryan, W., Harrison, A., & Hayes, K. (2006). Functional data analysis of knee joint kinematics in the vertical jump. Sports Biomechanics, 5, 121–138. https://doi.org/10.1080/14763141.2006.9628228
  • Santello, M., Flanders, M., & Soechting, J. F. (2002). Patterns of hand motion during grasping and the influence of sensory guidance. Journal of Neuroscience, 22(4), 1426–1435.https://doi.org/10.1523/JNEUROSCI.22-04-01426.2002
  • Scholes, C. J., McDonald, M. D., & Parker, A. W. (2012). Single-subject analysis reveals variation in knee mechanics during step landing. Journal of Biomechanics, 45(12), 2074–2078. https://doi.org/10.1016/j.jbiomech.2012.05.046
  • Thomas, J. S., Corcos, D. M., & Hasan, Z. (2005). Kinematic and kinetic constraints on arm, trunk, and leg segments in target-reaching movements. Journal of Neurophysiology, 93(1), 352–364. https://doi.org/10.1152/jn.00582.2004
  • Vaillancourt, D. E., & Newell, K. M. (2002). Changing complexity in human behavior and physiology through aging and disease. Neurobiology of Aging, 23(1), 1–11. https://doi.org/10.1016/S0197-4580(01)00247-0
  • Verrel, J., Pologe, S., Manselle, W., Lindenberger, U., & Woollacott, M. (2013). Coordination of degrees of freedom and stabilization of task variables in a complex motor skill: Expertise-related differences in cello bowing. Experimental Brain Research, 224, 323–334. https://doi.org/10.1007/s00221-012-3314-2
  • Winges, S. A., & Furuya, S. (2015). Distinct digit kinematics by professional and amateur pianists. Neuroscience, 284, 643–652. https://doi.org/10.1016/j.neuroscience.2014.10.041
  • Winter, D. A. (2005). Biomechanics and motor control of human movement (3rd ed.). Wiley.
  • Yang, J. F., & Scholz, J. P. (2005). Learning a throwing task is associated with differential changes in the use of motor abundance. Experimental Brain Research, 163(2), 137–158. https://doi.org/10.1007/s00221-004-2149-x
  • Yeow, C. H., Lee, P. V. S., & Goh, J. C. H. (2009). Effect of landing height on frontal plane kinematics, kinetics and energy dissipation at lower extremity joints. Journal of Biomechanics, 42(12), 1967–1973. https://doi.org/10.1016/j.jbiomech.2009.05.017
  • Zanone, P. G., & Kelso, J. S. (1997). Coordination dynamics of learning and transfer: Collective and component levels. Journal of Experimental Psychology: Human Perception and Performance, 23(5), 1454. https://doi.org/10.1037/0096-1523.23.5.1454