228
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Changes in Movement Control Processes Following Visuomotor Adaptation

ORCID Icon, & ORCID Icon
Pages 113-124 | Received 26 Apr 2020, Accepted 19 Apr 2021, Published online: 13 Jun 2021

References

  • Bastian, A. J. (2008). Understanding sensorimotor adaptation and learning for rehabilitation. Current Opinion in Neurology, 21(6), 628–633. https://doi.org/10.1097/WCO.0b013e328315a293
  • Bond, K. M., & Taylor, J. A. (2015). Flexible explicit but rigid implicit learning in a visuomotor adaptation task. Journal of Neurophysiology, 113(10), 3836–3849. https://doi.org/10.1152/jn.00009.2015
  • Carlton, L. G. (1994). The effects of temporal-precision and time-minimization constraints on the spatial and temporal accuracy of aimed hand movements. Journal of Motor Behavior, 26(1), 43–50. https://doi.org/10.1080/00222895.1994.9941660
  • Desmurget, M., & Grafton, S. (2000). Forward modeling allows feedback control for fast reaching movements. Trends in Cognitive Sciences, 4(11), 423–431. https://doi.org/10.1016/S1364-6613(00)01537-0
  • Elliott, D., Chua, R., Pollock, B. J., & Lyons, J. (1995). Optimizing the use of vision in manual aiming: The role of practice. The Quarterly Journal of Experimental Psychology Section A, 48(1), 72–83. https://doi.org/10.1080/14640749508401376
  • Elliott, D., Hansen, S., Mendoza, J., & Tremblay, L. (2004). Learning to optimize speed, accuracy, and energy expenditure: a framework for understanding speed-accuracy relations in goal-Directed Aiming. Journal of Motor Behavior, 36(3), 339–351. https://doi.org/10.3200/JMBR.36.3.339-351
  • Elliott, D., Lyons, J., & Dyson, K. (1997). Rescaling an acquired discrete aiming movement: Specific or general motor learning? Human Movement Science, 16(1), 81–96. https://doi.org/10.1016/S0167-9457(96)00041-3
  • Elliott, D., Lyons, J., Hayes, S. J., Burkitt, J. J., Roberts, J. W., Grierson, L. E. M., … Bennett, S. J. (2017). The multiple process model of goal-directed reaching revisited. Neuroscience & Biobehavioral Reviews, 72, 95–110. https://doi.org/10.1016/j.neubiorev.2016.11.016
  • Fernandez-Ruiz, J., Wong, W., Armstrong, I. T., & Flanagan, J. R. (2011). Relation between reaction time and reach errors during visuomotor adaptation. Behavioural Brain Research, 219(1), 8–14. https://doi.org/10.1016/j.bbr.2010.11.060
  • Fitts, P. M. (1964). Perceptual-motor skill learning: In A. W. Melton (Ed.), Categirues of human learning (pp. 243–285). Academic Press.
  • Fitts, P. M., & Posner, M. I. (1967). Human performance. Brooks/Cole.
  • Gritsenko, V., & Kalaska, J. F. (2010). Rapid online correction is selectively suppressed during movement with a visuomotor transformation. Journal of Neurophysiology, 104(6), 3084–3104. https://doi.org/10.1152/jn.00909.2009
  • Haith, A. M., Huberdeau, D. M., & Krakauer, J. W. (2015). the influence of movement preparation time on the expression of visuomotor learning and savings. Journal of Neuroscience, 35(13), 5109–5117. https://doi.org/10.1523/JNEUROSCI.3869-14.2015
  • Haith, A. M., Pakpoor, J., & Krakauer, J. W. (2016). Independence of movement preparation and movement initiation. Journal of Neuroscience, 36(10), 3007–3015. https://doi.org/10.1523/JNEUROSCI.3245-15.2016
  • Hinder, M. R., Riek, S., Tresilian, J. R., de Rugy, A., & Carson, R. G. (2010). Real-time error detection but not error correction drives automatic visuomotor adaptation. Experimental Brain Research, 201(2), 191–207. https://doi.org/10.1007/s00221-009-2025-9
  • Honda, T., Hirashima, M., & Nozaki, D. (2012). Adaptation to visual feedback delay influences visuomotor learning. PLoS One, 7(5), e37900. https://doi.org/10.1371/journal.pone.0037900
  • Keele, S. W., & Posner, M. I. (1968). Processing of visual feedback in rapid movements. Journal of Experimental Psychology, 77(1), 155–158. https://doi.org/10.1037/h0025754
  • Khan, M. A., Franks, I., Elliott, D., Lawrence, G., Chua, R., Bernier, P., … Weeks, D. (2006). Inferring online and offline processing of visual feedback in target-directed movements from kinematic data. Neuroscience & Biobehavioral Reviews, 30(8), 1106–1121. https://doi.org/10.1016/j.neubiorev.2006.05.002
  • Khan, M. A., & Franks, I. M. (2000). The Effect of Practice on Component Submovements is Dependent on the Availability of Visual Feedback. Journal of Motor Behavior, 32(3), 227–240. https://doi.org/10.1080/00222890009601374
  • Khan, M. A., Franks, I. M., & Goodman, D. (1998). The effect of practice on the control of rapid aiming movements: Evidence for an interdependency between programming and feedback processing. The Quarterly Journal of Experimental Psychology Section A, 51(2), 425–444. https://doi.org/10.1080/713755756
  • Khan, M. A., Lawrence, G., Fourkas, A., Franks, I. M., Elliott, D., & Pembroke, S. (2003). Online versus offline processing of visual feedback in the control of movement amplitude. Acta Psychologica, 113(1), 83–97. https://doi.org/10.1016/S0001-6918(02)00156-7
  • Khan, M. A., Lawrence, G. P., Franks, I. M., & Buckolz, E. (2004). The utilization of visual feedback from peripheral and central vision in the control of direction. Experimental Brain Research, 158(2), 241–251. https://doi.org/10.1007/s00221-004-1897-y
  • Krakauer, J. W., Hadjiosif, A. M., Xu, J., Wong, A. L., & Haith, A. M. (2019). Motor learning. In Comprehensive Physiology (pp. 613–663). Wiley.
  • Krakauer, J. W., Pine, Z. M., Ghilardi, M. F., & Ghez, C. (2000). Learning of visuomotor transformations for vectorial planning of reaching trajectories. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 20(23), 8916–8924.
  • Lee, K., Oh, Y., Izawa, J., & Schweighofer, N. (2018). Sensory prediction errors, not performance errors, update memories in visuomotor adaptation. Scientific Reports, 8(1), 16483. https://doi.org/10.1038/s41598-018-34598-y
  • Mazzoni, P., & Krakauer, J. W. (2006). An implicit plan overrides an explicit strategy during visuomotor adaptation. Journal of Neuroscience, 26(14), 3642–3645. https://doi.org/10.1523/JNEUROSCI.5317-05.2006
  • Messier, J., & Kalaska, J. F. (1999). Comparison of variability of initial kinematics and endpoints of reaching movements. Experimental Brain Research, 125(2), 139–152. https://doi.org/10.1007/s002210050669
  • Meyer, D. E., Smith, J. E. K., Kornblum, S., Abrams, R. A., & Wright, C. E. (1990). Speed—accuracy tradeoffs in aimed movements: Toward a theory of rapid voluntary action. In Attention and Performance XIII (pp. 173–226). Psychology Press. https://doi.org/10.4324/9780203772010-6
  • Morehead, J. R., Qasim, S. E., Crossley, M. J., & Ivry, R. (2015). Savings upon re-aiming in visuomotor adaptation. Journal of Neuroscience, 35(42), 14386–14396. https://doi.org/10.1523/JNEUROSCI.1046-15.2015
  • Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9(1), 97–113. https://doi.org/10.1016/0028-3932(71)90067-4
  • Sainburg, R. L., & Wang, J. (2002). Interlimb transfer of visuomotor rotations: Independence of direction and final position information. Experimental Brain Research, 145(4), 437–447. https://doi.org/10.1007/s00221-002-1140-7
  • Schmidt, R. A., et al. (1979). Motor-output variability: A theory for the accuracy of rapid motor acts. Psychological Review, 86(5), 415–451. https://doi.org/10.1037/0033-295X.86.5.415
  • Schween, R., Taube, W., Gollhofer, A., & Leukel, C. (2014). Online and post-trial feedback differentially affect implicit adaptation to a visuomotor rotation. Experimental Brain Research, 232(9), 3007–3013. https://doi.org/10.1007/s00221-014-3992-z
  • Shabbott, B. A., & Sainburg, R. L. (2010). Learning a visuomotor rotation: simultaneous visual and proprioceptive information is crucial for visuomotor remapping. Experimental Brain Research, 203(1), 75–87. https://doi.org/10.1007/s00221-010-2209-3
  • Shadmehr, R., Smith, M. A., & Krakauer, J. W. (2010). Error correction, sensory prediction, and adaptation in motor control. Annual Review of Neuroscience, 33(1), 89–108. https://doi.org/10.1146/annurev-neuro-060909-153135
  • Simon, A., & Bock, O. (2016). Influence of movement kinematics on visuomotor adaptation. Experimental Brain Research, 234(11), 3083–3090. https://doi.org/10.1007/s00221-016-4707-4
  • Taylor, J. A., & Ivry, R. B. (2011). Flexible cognitive strategies during motor learning. PLoS Computational Biology, 7(3), e1001096. https://doi.org/10.1371/journal.pcbi.1001096
  • Taylor, J. A., Krakauer, J. W., & Ivry, R. B. (2014). Explicit and implicit contributions to learning in a sensorimotor adaptation task. Journal of Neuroscience, 34(8), 3023–3032. https://doi.org/10.1523/JNEUROSCI.3619-13.2014
  • Wang, J., & Sainburg, R. L. (2005). Adaptation to visuomotor rotations remaps movement vectors, not final positions. Journal of Neuroscience, 25(16), 4024–4030. https://doi.org/10.1523/JNEUROSCI.5000-04.2005
  • Wijeyaratnam, D. O., Chua, R., & Cressman, E. K. E. K. (2019). Going offline: differences in the contributions of movement control processes when reaching in a typical versus novel environment. Experimental Brain Research, 237(6), 1431–1444. https://doi.org/10.1007/s00221-019-05515-0
  • Wong, A. L., Haith, A. M., & Krakauer, J. W. (2015). Motor planning. The Neuroscientist, 21(4), 385–398. https://doi.org/10.1177/1073858414541484
  • Worringham, C. J. (1991). Variability effects on the internal structure of rapid aiming movements. Journal of Motor Behavior, 23(1), 75–85. https://doi.org/10.1080/00222895.1991.9941595
  • Yamamoto, K., Hoffman, D. S., & Strick, P. L. (2006). Rapid and long-lasting plasticity of input–output mapping. Journal of Neurophysiology, 96(5), 2797–2801. https://doi.org/10.1152/jn.00209.2006
  • Zelaznik, H. N., Hawkins, B., & Kisselburgh, L. (1983). Rapid visual feedback processing in single-aiming movements. Journal of Motor Behavior, 15(3), 217–236. https://doi.org/10.1080/00222895.1983.10735298
  • Zelaznik, H. N., Mone, S., McCabe, G. P., & Thaman, C. (1988). Role of temporal and spatial precision in determining the nature of the speed-accuracy trade-off in aimed-hand movements. Journal of Experimental Psychology: Human Perception and Performance, 14(2), 221–230. https://doi.org/10.1037/0096-1523.14.2.221

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.