195
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Kinematic Measures for Recovery Strategy Identification following an Obstacle-Induced Trip in Gait

&
Pages 193-201 | Received 21 Feb 2022, Accepted 27 Oct 2022, Published online: 05 Jan 2023

References

  • Allum, J. H. J., Scheltinga, A., & Honegger, F. (2017). The effect of peripheral vestibular recovery on improvements in vestibulo-ocular reflexes and balance control after acute unilateral peripheral vestibular loss. Otology & Neurotology: Official Publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology, 38(10), e531–e538. https://doi.org/10.1097/MAO.0000000000001477
  • Ashton-Miller, J. A., Yeh, M. W., Richardson, J. K., & Galloway, T. (1996). A cane reduces loss of balance in patients with peripheral neuropathy: results from a challenging unipedal balance test. Archives of Physical Medicine and Rehabilitation, 77(5), 446–452. https://doi.org/10.1016/S0003-9993(96)90032-5
  • Aviles, J., Wright, D. L., Allin, L. J., Alexander, N. B., & Madigan, M. L. (2020). Improvement in trunk kinematics after treadmill-based reactive balance training among older adults is strongly associated with trunk kinematics before training. Journal of Biomechanics, 113, 110112. https://doi.org/10.1016/j.jbiomech.2020.110112
  • Bahari, H., Vette, A. H., Hebert, J. S., & Rouhani, H. (2019). Predicted threshold against forward and backward loss of balance for perturbed walking. Journal of Biomechanics, 95, 109315. https://doi.org/10.1016/j.jbiomech.2019.109315
  • Bhatt, T., & Pai, Y. C. (2008). Immediate and latent interlimb transfer of gait stability adaptation following repeated exposure to slips. Journal of Motor Behavior, 40(5), 380–390. https://doi.org/10.3200/Jmbr.40.5.380-390
  • Bhatt, T., & Pai, Y. C. (2009). Prevention of slip-related backward balance loss: The effect of session intensity and frequency on long-term retention. Archives of Physical Medicine and Rehabilitation, 90(1), 34–42. https://doi.org/10.1016/j.apmr.2008.06.021
  • Bhatt, T., Wang, T. Y., Yang, F., & Pai, Y. C. (2013). Adaptation and generalization to opposing perturbations in walking. Neuroscience, 246, 435–450. https://doi.org/10.1016/j.neuroscience.2013.04.013
  • Bhatt, T., Wang, Y., Wang, S., & Kannan, L. (2021). Perturbation training for fall-risk reduction in healthy older adults: Interference and generalization to opposing novel perturbations post intervention. Frontiers in Sports and Active Living, 3, 697169. https://doi.org/10.3389/fspor.2021.697169
  • Bhatt, T., Wening, J. D., & Pai, Y. C. (2005). Influence of gait speed on stability: recovery from anterior slips and compensatory stepping. Gait & Posture, 21(2), 146–156. https://doi.org/10.1016/j.gaitpost.2004.01.008
  • Bhatt, T., Wening, J. D., & Pai, Y. C. (2006). Adaptive control of gait stability in reducing slip-related backward loss of balance. Experimental Brain Research, 170(1), 61–73. https://doi.org/10.1007/s00221-005-0189-5
  • Bruijn, S. M., Meijer, O. G., Beek, P. J., & van Dieen, J. H. (2013). Assessing the stability of human locomotion: a review of current measures. Journal of the Royal Society, Interface, 10(83), 20120999. https://doi.org/10.1098/rsif.2012.0999
  • Eng, J. J., Winter, D. A., & Patla, A. E. (1994). Strategies for recovery from a trip in early and late swing during human walking. Experimental Brain Research, 102(2), 339–349. https://doi.org/10.1007/BF00227520
  • Eveld, M. E., King, S. T., Vailati, L. G., Zelik, K. E., & Goldfarb, M. (2021). On the basis for stumble recovery strategy selection in healthy adults. Journal of Biomechanical Engineering, 143(7), 071003. https://doi.org/10.1115/1.4050171
  • Feng, Z., Zhai, Y., Zheng, Z., Yang, L., Luo, X., Dong, X., Han, Q., Jin, J., Chen, Z.-N., & Zhu, P. (2018). Loss of A20 in BM-MSCs regulates the Th17/Treg balance in Rheumatoid Arthritis. Scientific Reports, 8(1), 427. https://doi.org/10.1038/s41598-017-18693-0
  • Grabiner, M. D., Donovan, S., Bareither, M. L., Marone, J. R., Hamstra-Wright, K., Gatts, S., & Troy, K. L. (2008). Trunk kinematics and fall risk of older adults: Translating biomechanical results to the clinic. Journal of Electromyography and Kinesiology: Official Journal of the International Society of Electrophysiological Kinesiology, 18(2), 197–204. https://doi.org/10.1016/j.jelekin.2007.06.009
  • Hof, A. L., Gazendam, M. G. J., & Sinke, W. E. (2005). The condition for dynamic stability. Journal of Biomechanics, 38(1), 1–8. https://doi.org/10.1016/j.jbiomech.2004.03.025
  • Horak, F. B. (2006). Postural orientation and equilibrium: what do we need to know about neural control of balance to prevent falls? Age and Ageing, 35(suppl_2), ii7–ii11. https://doi.org/10.1093/ageing/afl077
  • Hsu, W. L., Chou, L. S., & Woollacott, M. (2013). Age-related changes in joint coordination during balance recovery. Age (Dordrecht, Netherlands), 35(4), 1299–1309. https://doi.org/10.1007/s11357-012-9422-x
  • Kagawa, T., & Suzuki, R. (2021). Balance map analysis for visualization and quantification of balance in human walking. IEEE Transactions on Neural Systems and Rehabilitation Engineering: A Publication of the IEEE Engineering in Medicine and Biology Society, 29, 2153–2163. https://doi.org/10.1109/TNSRE.2021.3120429
  • Karamikabir, H., Afshari, M., & Arashi, M. (2018). Shrinkage estimation of non-negative mean vector with unknown covariance under balance loss. Journal of Inequalities and Applications, 2018(1), 331. https://doi.org/10.1186/s13660-018-1919-0
  • Kobsar, D., Charlton, J. M., Tse, C. T. F., Esculier, J.-F., Graffos, A., Krowchuk, N. M., Thatcher, D., & Hunt, M. A. (2020). Validity and reliability of wearable inertial sensors in healthy adult walking: a systematic review and meta-analysis. Journal of Neuroengineering and Rehabilitation, 17(1), 62. https://doi.org/10.1186/s12984-020-00685-3
  • Konig, M., Epro, G., Seeley, J., Potthast, W., & Karamanidis, K. (2019). Retention and generalizability of balance recovery response adaptations from trip perturbations across the adult life span. Journal of Neurophysiology, 122(5), 1884–1893. https://doi.org/10.1152/jn.00380.2019
  • Lortie, M., & Rizzo, P. (1999). Reporting and classification of loss of balance accidents. Safety Science, 33(1-2), 69–85. https://doi.org/10.1016/S0925-7535(99)00025-9
  • Maki, B. E., & McIlroy, W. E. (1997). The role of limb movements in maintaining upright stance: The ''change-in-support’' strategy. Physical Therapy, 77(5), 488–507. https://doi.org/10.1093/ptj/77.5.488
  • Martelli, D., Aprigliano, F., Tropea, P., Pasquini, G., Micera, S., & Monaco, V. (2017). Stability against backward balance loss: Age-related modifications following slip-like perturbations of multiple amplitudes. Gait & Posture, 53, 207–214. https://doi.org/10.1016/j.gaitpost.2017.02.002
  • Moonen, G., Lievens, I., & Bianchi, E. (2015). [Loss of balance, gait disturbance and falls in an elderly woman]. Rev Med Liege, 70(10), 517–526.
  • Nieuwenhuijzen, P. H., & Duysens, J. (2007). Proactive and reactive mechanisms play a role in stepping on inverting surfaces during gait. Journal of Neurophysiology, 98(4), 2266–2273. https://doi.org/10.1152/jn.01226.2006
  • Norton, R., Campbell, A. J., Lee-Joe, T., Robinson, E., & Butler, M. (1997). Circumstances of falls resulting in hip fractures among older people. Journal of the American Geriatrics Society, 45(9), 1108–1112.
  • Ofori, E. K., Wang, S., & Bhatt, T. (2021). Validity of inertial sensors for assessing balance kinematics and mobility during treadmill-based perturbation and dance training. Sensors (Basel), 21(9), 3065. https://doi.org/10.3390/s21093065
  • Ohtsu, H., Yoshida, S., Minamisawa, T., Takahashi, T., Yomogida, S. I., & Kanzaki, H. (2019). Investigation of balance strategy over gait cycle based on margin of stability. Journal of Biomechanics, 95, 109319. https://doi.org/10.1016/j.jbiomech.2019.109319
  • Pai, Y. C., & Bhatt, T. S. (2007). Repeated-slip training: An emerging paradigm for prevention of slip-related falls among older adults. Physical Therapy, 87(11), 1478–1491. https://doi.org/10.2522/ptj.20060326
  • Pai, Y. C., Wening, J. D., Runtz, E. F., Iqbal, K., & Pavol, M. J. (2003). Role of feedforward control of movement stability in reducing slip-related balance loss and falls among older adults. Journal of Neurophysiology, 90(2), 755–762. https://doi.org/10.1152/jn.01118.2002
  • Pavol, M. J., Owings, T. M., Foley, K. T., & Grabiner, M. D. (1999). Gait characteristics as risk factors for falling from trips induced in older adults. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 54(11), M583–M590. https://doi.org/10.1093/gerona/54.11.M583
  • Pavol, M. J., Owings, T. M., Foley, K. T., & Grabiner, M. D. (2001). Mechanisms leading to a fall from an induced trip in healthy older adults. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 56(7), M428–M437. https://doi.org/10.1093/gerona/56.7.M428
  • Peebles, A. T., Reinholdt, A., Bruetsch, A. P., Lynch, S. G., & Huisinga, J. M. (2016). Dynamic margin of stability during gait is altered in persons with multiple sclerosis. Journal of Biomechanics, 49(16), 3949–3955.
  • Stevens, J. A., & Sogolow, E. D. (2005). Gender differences for non-fatal unintentional fall related injuries among older adults. Injury Prevention: Journal of the International Society for Child and Adolescent Injury Prevention, 11(2), 115–119. https://doi.org/10.1136/ip.2004.005835
  • Tang, P. F., Woollacott, M. H., & Chong, R. K. Y. (1998). Control of reactive balance adjustments in perturbed human walking: roles of proximal and distal postural muscle activity. Experimental Brain Research, 119(2), 141–152. https://doi.org/10.1007/s002210050327
  • Thelen, D. G., Wojcik, L. A., Schultz, A. B., Ashton-Miller, J. A., & Alexander, N. B. (1997). Age differences in using a rapid step to regain balance during a forward fall. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 52(1), M8–M13.
  • Tung, F. L., Yang, Y. R., Lee, C. C., & Wang, R. Y. (2010). Balance outcomes after additional sit-to-stand training in subjects with stroke: a randomized controlled trial. Clinical Rehabilitation, 24(6), 533–542. https://doi.org/10.1177/0269215509360751
  • Tuunainen, E., Rasku, J., Jantti, P., & Pyykko, I. (2014). Risk factors of falls in community dwelling active elderly. Auris, Nasus, Larynx, 41(1), 10–16. https://doi.org/10.1016/j.anl.2013.05.002
  • van den Bogert, A. J., Pavol, M. J., & Grabiner, M. D. (2002). Response time is more important than walking speed for the ability of older adults to avoid a fall after a trip. Journal of Biomechanics, 35(2), 199–205. https://doi.org/10.1016/S0021-9290(01)00198-1
  • Van Dieen, J. H., Pijnappels, M., & Bobbert, M. (2005). Age-related intrinsic limitations in preventing a trip and regaining balance after a trip. Safety Science, 43(7), 437–453.
  • Wang, T. Y., Bhatt, T., Yang, F., & Pai, Y. C. (2012). Adaptive control reduces trip-induced forward gait instability among young adults. Journal of Biomechanics, 45(7), 1169–1175. https://doi.org/10.1016/j.jbiomech.2012.02.001
  • Wang, Y., Wang, S., Bolton, R., Kaur, T., & Bhatt, T. (2020). Effects of task-specific obstacle-induced trip-perturbation training: proactive and reactive adaptation to reduce fall-risk in community-dwelling older adults. Aging Clinical and Experimental Research, 32(5), 893–905. https://doi.org/10.1007/s40520-019-01268-6
  • Yang, F., & Pai, Y. C. (2011). Automatic recognition of falls in gait-slip training: Harness load cell based criteria. Journal of Biomechanics, 44(12), 2243–2249. https://doi.org/10.1016/j.jbiomech.2011.05.039
  • Yang, F., Anderson, F. C., & Pai, Y. C. (2007). Predicted threshold against backward balance loss in gait. Journal of Biomechanics, 40(4), 804–811. https://doi.org/10.1016/j.jbiomech.2006.03.015
  • Yang, F., Anderson, F. C., & Pai, Y. C. (2008). Predicted threshold against backward balance loss following a slip in gait. Journal of Biomechanics, 41(9), 1823–1831. https://doi.org/10.1016/j.jbiomech.2008.04.005
  • Yang, F., Espy, D., & Pai, Y. C. (2009). Feasible stability region in the frontal plane during human gait. Annals of Biomedical Engineering, 37(12), 2606–2614. https://doi.org/10.1007/s10439-009-9798-7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.