685
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Somatosensory Information in Skilled Motor Performance: A Narrative Review

, &
Pages 453-474 | Received 25 Oct 2022, Accepted 05 May 2023, Published online: 28 May 2023

REFERENCES

  • Afzal, M. R., Lee, H., Yoon, J., Oh, M. K., & Lee, C. H. (2017, June 28–July 1). Development of an augmented feedback system for training of gait improvement using vibrotactile cues [Paper presentation]. Paper Presented at the 14th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), Jeju, South Korea. IEEE.
  • Aimonetti, J. M., Hospod, V., Roll, J. P., & Ribot-Ciscar, E. (2007). Cutaneous afferents provide a neuronal population vector that encodes the orientation of human ankle movements. The Journal of Physiology, 580(Pt. 2), 649–658. https://doi.org/10.1113/jphysiol.2006.123075
  • Aimonetti, J. M., Roll, J. P., Hospod, V., & Ribot-Ciscar, E. (2012). Ankle joint movements are encoded by both cutaneous and muscle afferents in humans. Experimental Brain Research, 221(2), 167–176. https://doi.org/10.1007/s00221-012-3160-2
  • Albers, J. W., & Pop-Busui, R. (2014). Diabetic neuropathy: Mechanisms, emerging treatments, and subtypes. Current Neurology and Neuroscience Reports, 14(8), 1–18. https://doi.org/10.1007/s11910-014-0473-5
  • Almuklass, A. M., Capobianco, R. A., Feeney, D. F., Alvarez, E., & Enoka, R. M. (2020). Sensory nerve stimulation causes an immediate improvement in motor function of persons with multiple sclerosis: A pilot study. Multiple Sclerosis and Related Disorders, 38, 101508. https://doi.org/10.1016/j.msard.2019.101508
  • Aman, J. E., Elangovan, N., Yeh, I. L., & Konczak, J. (2014). The effectiveness of proprioceptive training for improving motor function: A systematic review. Frontiers in Human Neuroscience, 8, 1075. https://doi.org/10.3389/fnhum.2014.01075
  • Ameli, M., Grefkes, C., Kemper, F., Riegg, F. P., Rehme, A. K., Karbe, H., Fink, G. R., & Nowak, D. A. (2009). Differential effects of high-frequency repetitive transcranial magnetic stimulation over ipsilesional primary motor cortex in cortical and subcortical middle cerebral artery stroke. Annals of Neurology, 66(3), 298–309. https://doi.org/10.1002/ana.21725
  • Antal, A., & Paulus, W. (2013). Transcranial alternating current stimulation (tACS). Frontiers in Human Neuroscience, 7, 1–4. https://doi.org/10.3389/fnhum.2013.00317
  • Appelbaum, L. G., Cain, M. S., Schroeder, J. E., Darling, E. F., & Mitroff, S. R. (2012). Stroboscopic visual training improves information encoding in short-term memory. Attention, Perception & Psychophysics, 74(8), 1681–1691. https://doi.org/10.3758/s13414-012-0344-6
  • Appelbaum, L. G., Schroeder, J. E., Cain, M. S., & Mitroff, S. R. (2011). Improved visual cognition through stroboscopic training. Frontiers in Psychology, 2, 276. https://doi.org/10.3389/fpsyg.2011.00276
  • Arpin, D. J., Heinrichs-Graham, E., Gehringer, J. E., Zabad, R., Wilson, T. W., & Kurz, M. J. (2017). Altered sensorimotor cortical oscillations in individuals with multiple sclerosis suggests a faulty internal model. Human Brain Mapping, 38(8), 4009–4018. https://doi.org/10.1002/hbm.23644
  • Azarpaikan, A., Taherii Torbati, H. R., Sohrabi, M., Boostani, R., & Ghoshuni, M. (2019). The effect of parietal and cerebellar transcranial direct current stimulation on bimanual coordinated adaptive motor learning. Journal of Psychophysiology, 35(1), 1–14.
  • Bark, K., Wheeler, J. W., Premakumar, S., & Cutkosky, M. R. (2008, March 13–14). Comparison of skin stretch and vibrotactile stimulation for feedback of proprioceptive information [Paper presentation]. Paper Presented at the 16th Symposium on Haptics Interfaces for Virtual Environment and Teleoperator Systems, Reno, NV.
  • Bassiri, Z., Austin, C., Cousin, C., & Martelli, D. (2022). Subsensory electrical noise stimulation applied to the lower trunk improves postural control during visual perturbations. Gait & Posture, 96, 22–28. https://doi.org/10.1016/j.gaitpost.2022.05.010
  • Bastian, A. J. (2006). Learning to predict the future: The cerebellum adapts feedforward movement control. Current Opinion in Neurobiology, 16(6), 645–649. https://doi.org/10.1016/j.conb.2006.08.016
  • Bayes, T. (1763). An essay towards solving a problem in the doctrine of chances. By the late Rev. Mr. Bayes, FRS communicated by Mr. Price, in a letter to John Canton. Philosophical Transactions of the Royal Society, 53, 370–418.
  • Bays, P. M., & Wolpert, D. M. (2007). Computational principles of sensorimotor control that minimize uncertainty and variability. The Journal of Physiology, 578(Pt 2), 387–396. https://doi.org/10.1113/jphysiol.2006.120121
  • Bernstein, N. A. (1945). Current problems of neurophysiology. Fiziologicheskii Zhurnal SSSR Imeni IM Sechenova, 31(5–6), 298–311.
  • Blakemore, S. J., Frith, C. D., & Wolpert, D. M. (2001). The cerebellum is involved in predicting the sensory consequences of action. Neuroreport, 12(9), 1879–1884. https://doi.org/10.1097/00001756-200107030-00023
  • Boisgontier, M. P., & Nougier, V. (2013). Ageing of internal models: From a continuous to an intermittent proprioceptive control of movement. Age (Dordrecht, Netherlands), 35(4), 1339–1355. https://doi.org/10.1007/s11357-012-9436-4
  • Cadore, E. L., Rodríguez-Mañas, L., Sinclair, A., & Izquierdo, M. (2013). Effects of different exercise interventions on risk of falls, gait ability, and balance in physically frail older adults: A systematic review. Rejuvenation Research, 16(2), 105–114. https://doi.org/10.1089/rej.2012.1397
  • Caligiore, D., Arbib, M. A., Miall, R. C., & Baldassarre, G. (2019). The super-learning hypothesis: Integrating learning processes across cortex, cerebellum and basal ganglia. Neuroscience and Biobehavioral Reviews, 100, 19–34. https://doi.org/10.1016/j.neubiorev.2019.02.008
  • Cameron, M. H., Horak, F. B., Herndon, R. R., & Bourdette, D. (2008). Imbalance in multiple sclerosis: A result of slowed spinal somatosensory conduction. Somatosensory & Motor Research, 25(2), 113–122. https://doi.org/10.1080/08990220802131127
  • Chervyakov, A. V., Chernyavsky, A. Y., Sinitsyn, D. O., & Piradov, M. A. (2015). Possible mechanisms underlying the therapeutic effects of transcranial magnetic stimulation. Frontiers in Human Neuroscience, 9, 1–14. https://doi.org/10.3389/fnhum.2015.00303
  • Chisholm, A. E., Qaiser, T., Williams, A. M. M., Eginyan, G., & Lam, T. (2019). Acquisition of a precision walking skill and the impact of proprioceptive deficits in people with motor-incomplete spinal cord injury. Journal of Neurophysiology, 121(3), 1078–1084. https://doi.org/10.1152/jn.00432.2018
  • Cho, S., Ku, J., Cho, Y. K., Kim, I. Y., Kang, Y. J., Jang, D. P., & Kim, S. I. (2014). Development of virtual reality proprioceptive rehabilitation system for stroke patients. Computer Methods and Programs in Biomedicine, 113(1), 258–265. https://doi.org/10.1016/j.cmpb.2013.09.006
  • Cluff, T., Crevecoeur, F., & Scott, S. H. (2015). A perspective on multisensory integration and rapid perturbation responses. Vision Research, 110(Pt B), 215–222. https://doi.org/10.1016/j.visres.2014.06.011
  • Cover, T. M., & Thomas, J. (2006). Elements of information theory (2nd ed.). Wiley-Interscience.
  • Crevecoeur, F., Munoz, D. P., & Scott, S. H. (2016). Dynamic multisensory integration: Somatosensory speed trumps visual accuracy during feedback control. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 36(33), 8598–8611. https://doi.org/10.1523/JNEUROSCI.0184-16.2016
  • Cullen, K. E., & Brooks, J. X. (2015). Neural correlates of sensory prediction errors in monkeys: Evidence for internal models of voluntary self-motion in the cerebellum. Cerebellum (London, England), 14(1), 31–34. https://doi.org/10.1007/s12311-014-0608-x
  • Cyma-Wejchenig, M., Tarnas, J., Marciniak, K., & Stemplewski, R. (2020). The influence of proprioceptive training with the use of virtual reality on postural stability of workers working at height. Sensors (Basel), 20(13), 3731. https://doi.org/10.3390/s20133731
  • de Bruin, E. D., Schoene, D., Pichierri, G., & Smith, S. T. (2010). Use of virtual reality technique for the training of motor control in the elderly Some theoretical considerations. Zeitschrift Fur Gerontologie Und Geriatrie, 43(4), 229–234. https://doi.org/10.1007/s00391-010-0124-7
  • Dimitriou, M., Wolpert, D. M., & Franklin, D. W. (2013). The temporal evolution of feedback gains rapidly update to task demands. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 33(26), 10898–10909. https://doi.org/10.1523/JNEUROSCI.5669-12.2013
  • Dissanayaka, T., Zoghi, M., Farrell, M., Egan, G. F., & Jaberzadeh, S. (2017). Does transcranial electrical stimulation enhance corticospinal excitability of the motor cortex in healthy individuals? A systematic review and meta-analysis. The European Journal of Neuroscience, 46(4), 1968–1990. https://doi.org/10.1111/ejn.13640
  • Doppelmayr, M., Pixa, N. H., & Steinberg, F. (2016). Cerebellar, but not motor or parietal, high-density anodal transcranial direct current stimulation facilitates motor adaptation. Journal of the International Neuropsychological Society : JINS, 22(9), 928–936. https://doi.org/10.1017/S1355617716000345
  • Doya, K. (1999). What are the computations of the cerebellum, the basal ganglia and the cerebral cortex? Neural Networks : The Official Journal of the International Neural Network Society, 12(7–8), 961–974. https://doi.org/10.1016/s0893-6080(99)00046-5
  • Doya, K. (2000). Complementary roles of basal ganglia and cerebellum in learning and motor control. Current Opinion in Neurobiology, 10(6), 732–739. https://doi.org/10.1016/s0959-4388(00)00153-7
  • Edgley, S. A., & Gallimore, C. M. (1988). The morphology and projections of dorsal horn spinocerebellar tract neurons in the cat. The Journal of Physiology, 397, 99–111. https://doi.org/10.1113/jphysiol.1988.sp016990
  • Elangovan, N., Herrmann, A., & Konczak, J. (2014). Assessing proprioceptive function: Evaluating joint position matching methods against psychophysical thresholds. Physical Therapy, 94(4), 553–561. https://doi.org/10.2522/ptj.20130103
  • Elboim-Gabyzon, M., Andrawus Najjar, S., & Shtarker, H. (2019). Effects of transcutaneous electrical nerve stimulation (TENS) on acute postoperative pain intensity and mobility after hip fracture: A double-blinded, randomized trial. Clinical Interventions in Aging, 14, 1841–1850. https://doi.org/10.2147/CIA.S203658
  • Emara, T. H., Moustafa, R. R., ElNahas, N. M., ElGanzoury, A. M., Abdo, T. A., Mohamed, S. A., & ElEtribi, M. A. (2010). Repetitive transcranial magnetic stimulation at 1Hz and 5Hz produces sustained improvement in motor function and disability after ischaemic stroke. European Journal of Neurology, 17(9), 1203–1209. https://doi.org/10.1111/j.1468-1331.2010.03000.x
  • Enoka, R. M., Amiridis, I. G., & Duchateau, J. (2020). Electrical stimulation of muscle: Electrophysiology and rehabilitation. Physiology (Bethesda, Md.), 35(1), 40–56. https://doi.org/10.1152/physiol.00015.2019
  • Faisal, A. A., Selen, L. P. J., & Wolpert, D. M. (2008). Noise in the nervous system. Nature Reviews. Neuroscience, 9(4), 292–303. https://doi.org/10.1038/nrn2258
  • Faltus, J., Criss, C. R., & Grooms, D. R. (2020). Shifting focus: A clinician’s guide to understanding neuroplasticity for anterior cruciate ligament rehabilitation. Current Sports Medicine Reports, 19(2), 76–83. https://doi.org/10.1249/JSR.0000000000000688
  • Faraji, J., Gomez-Palacio-Schjetnan, A., Luczak, A., & Metz, G. A. (2013). Beyond the silence: Bilateral somatosensory stimulation enhances skilled movement quality and neural density in intact behaving rats. Behavioural Brain Research, 253, 78–89. https://doi.org/10.1016/j.bbr.2013.07.022
  • Felsberg, D. T., Maher, J. P., & Rhea, C. K. (2019). The state of behavior change techniques in virtual reality rehabilitation of neurologic populations. Frontiers in Psychology, 10, 1–15. https://doi.org/10.3389/fpsyg.2019.00979
  • Feng, H., Li, C., Liu, J., Wang, L., Ma, J., Li, G., Gan, L., Shang, X., & Wu, Z. (2019). Virtual reality rehabilitation versus conventional physical therapy for improving balance and gait in Parkinson’s disease patients: A randomized controlled trial. Medical Science Monitor : International Medical Journal of Experimental and Clinical Research, 25, 4186–4192. https://doi.org/10.12659/MSM.916455
  • Flanagan, J. R., Vetter, P., Johansson, R. S., & Wolpert, D. M. (2003). Prediction precedes control in motor learning. Current Biology : CB, 13(2), 146–150. https://doi.org/10.1016/s0960-9822(03)00007-1
  • Fling, B. W., Dutta, G. G., Schlueter, H., Cameron, M. H., & Horak, F. B. (2014). Associations between proprioceptive neural pathway structural connectivity and balance in people with multiple sclerosis. Frontiers in Human Neuroscience, 8, 814. https://doi.org/10.3389/fnhum.2014.00814
  • Fonteyn, E. M. R., Schmitz-Hübsch, T., Verstappen, C. C., Baliko, L., Bloem, B. R., Boesch, S., Bunn, L., Charles, P., Dürr, A., Filla, A., Giunti, P., Globas, C., Klockgether, T., Melegh, B., Pandolfo, M., De Rosa, A., Schöls, L., Timmann, D., Munneke, M., Kremer, B. P. H., & van de Warrenburg, B. P. C. (2010). Falls in spinocerebellar ataxias: Results of the EuroSCA fall study. Cerebellum (London, England), 9(2), 232–239. https://doi.org/10.1007/s12311-010-0155-z
  • Fregni, F., Boggio, P. S., Valle, A. C., Rocha, R. R., Duarte, J., Ferreira, M. J. L., Wagner, T., Fecteau, S., Rigonatti, S. P., Riberto, M., Freedman, S. D., & Pascual-Leone, A. (2006). A sham-controlled trial of a 5-day course of repetitive transcranial magnetic stimulation of the unaffected hemisphere in stroke patients. Stroke, 37(8), 2115–2122. https://doi.org/10.1161/01.STR.0000231390.58967.6b
  • Fujimoto, S., Kon, N., Otaka, Y., Yamaguchi, T., Nakayama, T., Kondo, K., Ragert, P., & Tanaka, S. (2016). Transcranial direct current stimulation over the primary and secondary somatosensory cortices transiently improves tactile spatial discrimination in stroke patients. Frontiers in Neuroscience, 10, 1–9. https://doi.org/10.3389/fnins.2016.00128
  • Galea, J. M., Vazquez, A., Pasricha, N., de Xivry, J. J. O., & Celnik, P. (2011). Dissociating the roles of the cerebellum and motor cortex during adaptive learning: The motor cortex retains what the cerebellum learns. Cerebral Cortex (New York, N.Y. : 1991), 21(8), 1761–1770. https://doi.org/10.1093/cercor/bhq246
  • Gandevia, S. C., McCloskey, D. I., & Burke, D. (1992). Kinaesthetic signals and muscle contraction. Trends in Neurosciences, 15(2), 62–65. https://doi.org/10.1016/0166-2236(92)90028-7
  • Gaser, C., & Schlaug, G. (2003). Brain structures differ between musicians and non-musicians. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 23(27), 9240–9245. https://doi.org/10.1523/JNEUROSCI.23-27-09240.2003
  • Gesslbauer, B., Hruby, L. A., Roche, A. D., Farina, D., Blumer, R., & Aszmann, O. C. (2017). Axonal components of nerves innervating the human arm. Annals of Neurology, 82(3), 396–408. https://doi.org/10.1002/ana.25018
  • Ghafouri, M., & Lestienne, F. G. (2000). Altered representation of peripersonal space in the elderly human subject: A sensorimotor approach. Neuroscience Letters, 289(3), 193–196. https://doi.org/10.1016/s0304-3940(00)01280-5
  • Gibson, J. J. (1966). The senses considered as perceptual systems. Houghton Mifflin.
  • Goble, D. J. (2010). Proprioceptive acuity assessment via joint position matching: From basic science to general practice. Physical Therapy, 90(8), 1176–1184. https://doi.org/10.2522/ptj.20090399
  • Goble, D. J., Coxon, J. P., Van Impe, A., Geurts, M., Doumas, M., Wenderoth, N., & Swinnen, S. P. (2011). Brain activity during ankle proprioceptive stimulation predicts balance performance in young and older adults. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 31(45), 16344–16352. https://doi.org/10.1523/JNEUROSCI.4159-11.2011
  • Goble, D. J., Coxon, J. P., Van Impe, A., Geurts, M., Van Hecke, W., Sunaert, S., Wenderoth, N., & Swinnen, S. P. (2012). The neural basis of central proprioceptive processing in older versus younger adults: An important sensory role for right putamen. Human Brain Mapping, 33(4), 895–908. https://doi.org/10.1002/hbm.21257
  • Goble, D. J., Coxon, J. P., Wenderoth, N., Van Impe, A., & Swinnen, S. P. (2009). Proprioceptive sensibility in the elderly: Degeneration, functional consequences and plastic-adaptive processes. Neuroscience and Biobehavioral Reviews, 33(3), 271–278. https://doi.org/10.1016/j.neubiorev.2008.08.012
  • Gokeler, A., Benjaminse, A., Hewett, T. E., Paterno, M. V., Ford, K. R., Otten, E., & Myer, G. D. (2013). Feedback techniques to target functional deficits following anterior cruciate ligament reconstruction: Implications for motor control and reduction of second injury risk. Sports Medicine (Auckland, N.Z.), 43(11), 1065–1074. https://doi.org/10.1007/s40279-013-0095-0
  • Goodworth, A. D., Wall, C., & Peterka, R. J. (2009). Influence of feedback parameters on performance of a vibrotactile balance prosthesis. IEEE Transactions on Neural Systems and Rehabilitation Engineering : A Publication of the IEEE Engineering in Medicine and Biology Society, 17(4), 397–408. https://doi.org/10.1109/TNSRE.2009.2023309
  • Goossen, B., van der Starre, J., & van der Heiden, C. (2019). A review of neuroimaging studies in generalized anxiety disorder: "So where do we stand?” Journal of Neural Transmission (Vienna, Austria : 1996), 126(9), 1203–1216. https://doi.org/10.1007/s00702-019-02024-w
  • Grooms, D. R., Diekfuss, J. A., Criss, C. R., Anand, M., Slutsky-Ganesh, A. B., DiCesare, C. A., & Myer, G. D. (2022). Preliminary brain-behavioral neural correlates of anterior cruciate ligament injury risk landing biomechanics using a novel bilateral leg press neuroimaging paradigm. PloS One, 17(8), e0272578. https://doi.org/10.1371/journal.pone.0272578
  • Gunn, H., Markevics, S., Haas, B., Marsden, J., & Freeman, J. (2015). Systematic review: The effectiveness of interventions to reduce falls and improve balance in adults with multiple sclerosis. Archives of Physical Medicine and Rehabilitation, 96(10), 1898–1912. https://doi.org/10.1016/j.apmr.2015.05.018
  • Haar, S., Sundar, G., & Faisal, A. A. (2021). Embodied virtual reality for the study of real-world motor learning. Plos One, 16(1), e0245717. https://doi.org/10.1371/journal.pone.0245717
  • Han, J., Anson, J., Waddington, G., & Adams, R. (2014). Sport attainment and proprioception. International Journal of Sports Science & Coaching, 9(1), 159–170. https://doi.org/10.1260/1747-9541.9.1.159
  • Han, J., Waddington, G., Adams, R., Anson, J., & Liu, Y. (2016). Assessing proprioception: A critical review of methods. Journal of Sport and Health Science, 5(1), 80–90. https://doi.org/10.1016/j.jshs.2014.10.004
  • Heroux, M. E., Butler, A. A., Robertson, L. S., Fisher, G., & Gandevia, S. C. (2022). Proprioception: A new look at an old concept. Journal of Applied Physiology (Bethesda, Md. : 1985), 132(3), 811–814. https://doi.org/10.1152/japplphysiol.00809.2021
  • Hirayama, K., Koga, T., Takahashi, T., & Osu, R. (2021). Transcranial direct current stimulation of the posterior parietal cortex biases human hand choice. Scientific Reports, 11(1), 204. https://doi.org/10.1038/s41598-020-80611-8
  • Hornburger, H., Nguemeni, C., Odorfer, T., & Zeller, D. (2019). Modulation of the rubber hand illusion by transcranial direct current stimulation over the contralateral somatosensory cortex. Neuropsychologia, 131, 353–359. https://doi.org/10.1016/j.neuropsychologia.2019.05.008
  • Howarth, C., Gleeson, P., & Attwell, D. (2012). Updated energy budgets for neural computation in the neocortex and cerebellum. Journal of Cerebral Blood Flow and Metabolism : Official Journal of the International Society of Cerebral Blood Flow and Metabolism, 32(7), 1222–1232. https://doi.org/10.1038/jcbfm.2012.35
  • Hulliger, M. (1984). The mammalian muscle-spindle and its central control. Reviews of Physiology, Biochemistry and Pharmacology, 101, 1–110. https://doi.org/10.1007/BFb0027694
  • Hummel, F. C., Heise, K., Celnik, P., Floel, A., Gerloff, C., & Cohen, L. G. (2010). Facilitating skilled right hand motor function in older subjects by anodal polarization over the left primary motor cortex. Neurobiology of Aging, 31(12), 2160–2168. https://doi.org/10.1016/j.neurobiolaging.2008.12.008
  • Iandolo, R., Bellini, A., Saiote, C., Marre, I., Bommarito, G., Oesingmann, N., Fleysher, L., Mancardi, G. L., Casadio, M., & Inglese, M. (2018). Neural correlates of lower limbs proprioception: An fMRI study of foot position matching. Human Brain Mapping, 39(5), 1929–1944. https://doi.org/10.1002/hbm.23972
  • Illman, M., Laaksonen, K., Liljeström, M., Jousmäki, V., Piitulainen, H., & Forss, N. (2020). Comparing MEG and EEG in detecting the ∼20-Hz rhythm modulation to tactile and proprioceptive stimulation. NeuroImage (Orlando, Fla.), 215, 116804–116804. https://doi.org/10.1016/j.neuroimage.2020.116804
  • Ishigaki, T., Imai, R., & Morioka, S. (2016). Cathodal transcranial direct current stimulation of the posterior parietal cortex reduces steady-state postural stability during the effect of light touch. Neuroreport, 27(14), 1050–1055. https://doi.org/10.1097/WNR.0000000000000654
  • Ishikawa, T., Tomatsu, S., Izawa, J., & Kakei, S. (2016). The cerebro-cerebellum: Could it be loci of forward models? Neuroscience Research, 104, 72–79. https://doi.org/10.1016/j.neures.2015.12.003
  • Ito, M., & Doya, K. (2011). Multiple representations and algorithms for reinforcement learning in the cortico-basal ganglia circuit. Current Opinion in Neurobiology, 21(3), 368–373. https://doi.org/10.1016/j.conb.2011.04.001
  • Jacobson, L., Koslowsky, M., & Lavidor, M. (2012). tDCS polarity effects in motor and cognitive domains: A meta-analytical review. Experimental Brain Research, 216(1), 1–10. https://doi.org/10.1007/s00221-011-2891-9
  • Jin, J. Z., Wang, Y. S., Lashgari, R., Swadlow, H. A., & Alonso, J. M. (2011). Faster thalamocortical processing for dark than light visual targets. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 31(48), 17471–17479. https://doi.org/10.1523/JNEUROSCI.2456-11.2011
  • Johansson, R. S., & Vallbo, A. B. (1979). Tactile sensibility in the human hand - relative and absolute densities of 4 types of mechanoreceptive units in glabrous skin. The Journal of Physiology, 286, 283–300. https://doi.org/10.1113/jphysiol.1979.sp012619
  • Jong, A. d., Kilbreath, S. L., Refshauge, K. M., & Adams, R. (2005). Performance in different proprioceptive tests does not correlate in ankles with recurrent sprain. Archives of Physical Medicine and Rehabilitation, 86(11), 2101–2105. https://doi.org/10.1016/j.apmr.2005.05.015
  • Kaminski, E., Steele, C. J., Hoff, M., Gundlach, C., Rjosk, V., Sehm, B., Villringer, A., & Ragert, P. (2016). Transcranial direct current stimulation (tDCS) over primary motor cortex leg area promotes dynamic balance task performance. Clinical Neurophysiology : Official Journal of the International Federation of Clinical Neurophysiology, 127(6), 2455–2462. https://doi.org/10.1016/j.clinph.2016.03.018
  • Kim, K. M., Estudillo-Martínez, M. D., Castellote-Caballero, Y., Estepa-Gallego, A., & Cruz-Díaz, D. (2021). Short-term effects of balance training with stroboscopic vision for patients with chronic ankle instability: A single-blinded randomized controlled trial. International Journal of Environmental Research and Public Health, 18(10), 1–14.
  • Kim, K. M., Kim, J. S., & Grooms, D. R. (2017). Stroboscopic vision to induce sensory reweighting during postural control. Journal of Sport Rehabilitation, 26(5), 1–5.
  • Kim, K. M., Kim, J. S., Oh, J., & Grooms, D. R. (2020). Stroboscopic vision as a dynamic sensory reweighting alternative to the sensory organization test. Journal of Sport Rehabilitation, 30(1), 166–172. https://doi.org/10.1123/jsr.2019-0466
  • Kim, Y. J., Ku, J., Cho, S., Kim, H. J., Cho, Y. K., Lim, T., & Kang, Y. J. (2014). Facilitation of corticospinal excitability by virtual reality exercise following anodal transcranial direct current stimulation in healthy volunteers and subacute stroke subjects. Journal of NeuroEngineering and Rehabilitation, 11(1), 1–12. https://doi.org/10.1186/1743-0003-11-124
  • Kim, Y. H., Park, J. W., Ko, M. H., Jang, S. H., & Lee, P. K. W. (2004). Facilitative effect of high frequency subthreshold repetitive transcranial magnetic stimulation on complex sequential motor learning in humans. Neuroscience Letters, 367(2), 181–185. https://doi.org/10.1016/j.neulet.2004.05.113
  • Kim, S. I., Song, I. H., Cho, S., Kim, I. Y., Ku, J., & Kang, Y. J. (2013). Proprioception rehabilitation training system for stroke patients using virtual reality technology. In 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 4621–4624.
  • Kirimoto, H., Ogata, K., Onishi, H., Oyama, M., Goto, Y., & Tobimatsu, S. (2011). Transcranial direct current stimulation over the motor association cortex induces plastic changes in ipsilateral primary motor and somatosensory cortices. Clinical Neurophysiology : Official Journal of the International Federation of Clinical Neurophysiology, 122(4), 777–783. https://doi.org/10.1016/j.clinph.2010.09.025
  • Kording, K. P., & Wolpert, D. M. (2004). Bayesian integration in sensorimotor learning. Nature, 427(6971), 244–247. https://doi.org/10.1038/nature02169
  • Kording, K. P., & Wolpert, D. M. (2006). Bayesian decision theory in sensorimotor control. Trends in Cognitive Sciences, 10(7), 319–326. https://doi.org/10.1016/j.tics.2006.05.003
  • Krakauer, J. W., & Mazzoni, P. (2011). Human sensorimotor learning: Adaptation, skill, and beyond. Current Opinion in Neurobiology, 21(4), 636–644. https://doi.org/10.1016/j.conb.2011.06.012
  • Krewer, C., Van de Winckel, A., Elangovan, N., Aman, J. E., & Konczak, J. (2016). Commentary on: "Assessing proprioception: A critical review of methods" by Han et al. Journal of Sport and Health Science, 5(1), 91–92. https://doi.org/10.1016/j.jshs.2015.11.001
  • Kumar, N., Manning, T. F., & Ostry, D. J. (2019). Somatosensory cortex participates in the consolidation of human motor memory. PLOS Biology, 17(10), e3000469. https://doi.org/10.1371/journal.pbio.3000469
  • Kwong, P. W., Ng, G. Y., Chung, R. C., & Ng, S. S. (2018). Transcutaneous electrical nerve stimulation improves walking capacity and reduces spasticity in stroke survivors: A systematic review and meta-analysis. Clinical Rehabilitation, 32(9), 1203–1219. https://doi.org/10.1177/0269215517745349
  • Lafargue, G., Noel, M., & Luyat, M. (2013). In the elderly, failure to update internal models leads to over-optimistic predictions about upcoming actions. PLoS One, 8(1), e51218. https://doi.org/10.1371/journal.pone.0051218
  • Lak, A., Okun, M., Moss, M. M., Gurnani, H., Farrell, K., Wells, M. J., Reddy, C. B., Kepecs, A., Harris, K. D., & Carandini, M. (2020). Dopaminergic and prefrontal basis of learning from sensory confidence and reward value. Neuron, 105(4), 700–711. https://doi.org/10.1016/j.neuron.2019.11.018
  • Lauretti, C., Pinzari, G., Ciancio, A. L., Davalli, A., Sacchetti, R., Sterzi, S., Guglielmelli, E., & Zollo, L. (2017, August 28–September 1). A vibrotactile stimulation system for improving postural control and knee joint proprioception in lower-limb amputees [Paper presentation]. Paper Presented at the 26th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), Lisbon, Portugal.
  • Lee, S. J., & Chun, M. H. (2014). Combination transcranial direct current stimulation and virtual reality therapy for upper extremity training in patients with subacute stroke. Archives of Physical Medicine and Rehabilitation, 95(3), 431–438. https://doi.org/10.1016/j.apmr.2013.10.027
  • Lee, H., Han, S., Page, G., Bruening, D. A., Seeley, M. K., & Hopkins, J. T. (2022). Effects of balance training with stroboscopic glasses on postural control in chronic ankle instability patients. Scandinavian Journal of Medicine & Science in Sports, 32(3), 576–587. https://doi.org/10.1111/sms.14098
  • Lewek, M. D., Feasel, J., Wentz, E., Brooks, F. P., & Whitton, M. C. (2012). Use of visual and proprioceptive feedback to improve gait speed and spatiotemporal symmetry following chronic stroke: A case series. Physical Therapy, 92(5), 748–756. https://doi.org/10.2522/ptj.20110206
  • Ling, J., Yasuda, K., Hayashi, Y., Imamura, S., & Iwata, H. (2022). Development of a vibrotactile cueing device that implicitly increases walking speed during gait training in stroke patients: An observational case series study. Journal of Medical Engineering & Technology, 46(1), 25–31. https://doi.org/10.1080/03091902.2021.1970839
  • Lira, M., Pantaleão, F. N., de Souza Ramos, C. G., & Boggio, P. S. (2018). Anodal transcranial direct current stimulation over the posterior parietal cortex reduces the onset time to the rubber hand illusion and increases the body ownership. Experimental Brain Research, 236(11), 2935–2943. https://doi.org/10.1007/s00221-018-5353-9
  • Liu, S., Ferris, L. M., Hilbig, S., Asamoa, E., LaRue, J. L., Lyon, D., Connolly, K., Port, N., & Appelbaum, L. G. (2020). Dynamic vision training transfers positively to batting practice performance among collegiate baseball batters. Psychology of Sport and Exercise, 51, 101759. https://doi.org/10.1016/j.psychsport.2020.101759
  • Lloyd, R. S., Cronin, J. B., Faigenbaum, A. D., Haff, G. G., Howard, R., Kraemer, W. J., Micheli, L. J., Myer, G. D., & Oliver, J. L. (2016). National strength and conditioning association position statement on long-term athletic development. Journal of Strength and Conditioning Research, 30(6), 1491–1509. https://doi.org/10.1519/JSC.0000000000001387
  • Mak, M. K., Wong-Yu, I. S., Shen, X., & Chung, C. L. (2017). Long-term effects of exercise and physical therapy in people with Parkinson disease. Nature Reviews. Neurology, 13(11), 689–703. https://doi.org/10.1038/nrneurol.2017.128
  • Makino, H., Hwang, E. J., Hedrick, N. G., & Komiyama, T. (2016). Circuit mechanisms of sensorimotor learning. Neuron, 92(4), 705–721. https://doi.org/10.1016/j.neuron.2016.10.029
  • McNamee, D., & Wolpert, D. M. (2019). Internal models in biological control. Annual Review of Control, Robotics, and Autonomous Systems, 2, 339–364. https://doi.org/10.1146/annurev-control-060117-105206
  • Meehan, S. K., Dao, E., Linsdell, M. A., & Boyd, L. A. (2011). Continuous theta burst stimulation over the contralesional sensory and motor cortex enhances motor learning post-stroke. Neuroscience Letters, 500(1), 26–30. https://doi.org/10.1016/j.neulet.2011.05.237
  • Miall, R. C., & Wolpert, D. M. (1996). Forward models for physiological motor control. Neural Networks : The Official Journal of the International Neural Network Society, 9(8), 1265–1279. https://doi.org/10.1016/s0893-6080(96)00035-4
  • Mikula, L., Sahnoun, S., Pisella, L., Blohm, G., & Khan, A. Z. (2018). Vibrotactile information improves proprioceptive reaching target localization. Plos One, 13(7), e0199627. https://doi.org/10.1371/journal.pone.0199627
  • Mildren, R. L., & Bent, L. R. (2016). Vibrotactile stimulation of fast-adapting cutaneous afferents from the foot modulates proprioception at the ankle joint. Journal of Applied Physiology (Bethesda, Md. : 1985), 120(8), 855–864. https://doi.org/10.1152/japplphysiol.00810.2015
  • Minarik, T., Sauseng, P., Dunne, L., Berger, B., & Sterr, A. (2015). Effects of anodal transcranial direct current stimulation on visually guided learning of grip force control. Biology, 4(1), 173–186. https://doi.org/10.3390/biology4010173
  • Mirdamadi, J. L., & Block, H. J. (2020). Somatosensory changes associated with motor skill learning. Journal of Neurophysiology, 123(3), 1052–1062. https://doi.org/10.1152/jn.00497.2019
  • Mitroff, S. R., Friesen, P., Bennett, D., Yoo, H., & Reichow, A. W. (2013). Enhancing ice hockey skills through stroboscopic visual training: A pilot study. Athletic Training & Sports Health Care, 5(6), 261–264. https://doi.org/10.3928/19425864-20131030-02
  • Miyaguchi, S., Inukai, Y., Matsumoto, Y., Miyashita, M., Takahashi, R., Otsuru, N., & Onishi, H. (2020). Effects on motor learning of transcranial alternating current stimulation applied over the primary motor cortex and cerebellar hemisphere. Journal of Clinical Neuroscience, 78, 296–300.
  • Miyaguchi, S., Otsuru, N., Kojima, S., Saito, K., Inukai, Y., Masaki, M., & Onishi, H. (2018). Transcranial alternating current stimulation with gamma oscillations over the primary motor cortex and cerebellar hemisphere improved visuomotor performance. Frontiers in Behavioral Neuroscience, 12, 1–9. https://doi.org/10.3389/fnbeh.2018.00132
  • Miyaguchi, S., Otsuru, N., Kojima, S., Yokota, H., Saito, K., Inukai, Y., & Onishi, H. (2019). Gamma tACS over M1 and cerebellar hemisphere improves motor performance in a phase-specific manner. Neuroscience Letters, 694, 64–68. https://doi.org/10.1016/j.neulet.2018.11.015
  • Mori, F., Nicoletti, C. G., Kusayanagi, H., Foti, C., Restivo, D. A., Marciani, M. G., & Centonze, D. (2013). Transcranial direct current stimulation ameliorates tactile sensory deficit in multiple sclerosis. Brain Stimulation, 6(4), 654–659. https://doi.org/10.1016/j.brs.2012.10.003
  • Nanhoe-Mahabier, W., Allum, J. H., Pasman, E. P., Overeem, S., & Bloem, B. R. (2012). The effects of vibrotactile biofeedback training on trunk sway in Parkinson’s disease patients. Parkinsonism & Related Disorders, 18(9), 1017–1021. https://doi.org/10.1016/j.parkreldis.2012.05.018
  • Nieuwboer, A. (2008). Cueing for freezing of gait in patients with Parkinson’s disease: A rehabilitation perspective. Movement Disorders, 23(S2), S475–S481. https://doi.org/10.1002/mds.21978
  • Nitsche, M. A., Schauenburg, A., Lang, N., Liebetanz, D., Exner, C., Paulus, W., & Tergau, F. (2003). Facilitation of implicit motor learning by weak transcranial direct current stimulation of the primary motor cortex in the human. Journal of Cognitive Neuroscience, 15(4), 619–626. https://doi.org/10.1162/089892903321662994
  • Nowak, D. A., Grefkes, C., Dafotakis, M., Eickhoff, S., Küst, J., Karbe, H., & Fink, G. R. (2008). Effects of low-frequency repetitive transcranial magnetic stimulation of the contralesional primary motor cortex on movement kinematics and neural activity in subcortical stroke. Archives of Neurology, 65(6), 741–747. https://doi.org/10.1001/archneur.65.6.741
  • Ohashi, H., Gribble, P. L., & Ostry, D. J. (2019). Somatosensory cortical excitability changes precede those in motor cortex during human motor learning. Journal of Neurophysiology, 122(4), 1397–1405. https://doi.org/10.1152/jn.00383.2019
  • Palmer, C. E., Auksztulewicz, R., Ondobaka, S., & Kilner, J. M. (2019). Sensorimotor beta power reflects the precision-weighting afforded to sensory prediction errors. NeuroImage, 200, 59–71. https://doi.org/10.1016/j.neuroimage.2019.06.034
  • Pixa, N. H., Berger, A., Steinberg, F., & Doppelmayr, M. (2019). Parietal, but not motor cortex, HD-atDCS deteriorates learning transfer of a complex bimanual coordination task. Journal of Cognitive Enhancement, 3(1), 111–123. https://doi.org/10.1007/s41465-018-0088-x
  • Pogrebnoy, D., & Dennett, A. (2020). Exercise programs delivered according to guidelines improve mobility in people with stroke: A systematic review and meta-analysis. Archives of Physical Medicine and Rehabilitation, 101(1), 154–165. https://doi.org/10.1016/j.apmr.2019.06.015
  • Prochazka, A. (2021). Proprioception: Clinical relevance and neurophysiology. Current Opinion in Physiology, 23, 100440. https://doi.org/10.1016/j.cophys.2021.05.003
  • Prochazka, A., Westerman, R. A., & Ziccone, S. P. (1977). Ia afferent activity during a variety of voluntary movements in cat. The Journal of Physiology, 268(2), 423–448. https://doi.org/10.1113/jphysiol.1977.sp011864
  • Proske, U., & Gandevia, S. C. (2009). The kinaesthetic senses. The Journal of Physiology, 587(Pt 17), 4139–4146. https://doi.org/10.1113/jphysiol.2009.175372
  • Reato, D., Rahman, A., Bikson, M., & Parra, L. C. (2010). Low-intensity electrical stimulation affects network dynamics by modulating population rate and spike timing. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 30(45), 15067–15079. https://doi.org/10.1523/JNEUROSCI.2059-10.2010
  • Refshauge, K. M., Chan, R., Taylor, J. L., & McCloskey, D. I. (1995). Detection of movements imposed on human hip, knee, ankle and toe joints. The Journal of Physiology, 488(1), 231–241. https://doi.org/10.1113/jphysiol.1995.sp020961
  • Reis, J., Schambra, H. M., Cohen, L. G., Buch, E. R., Fritsch, B., Zarahn, E., Celnik, P. A., & Krakauer, J. W. (2009). Noninvasive cortical stimulation enhances motor skill acquisition over multiple days through an effect on consolidation. Proceedings of the National Academy of Sciences of the United States of America, 106(5), 1590–1595. https://doi.org/10.1073/pnas.0805413106
  • Reyns, N., Houdayer, E., Bourriez, J. L., Blond, S., & Derambure, P. (2008). Post-movement beta synchronization in subjects presenting with sensory deafferentation. Clinical Neurophysiology : Official Journal of the International Federation of Clinical Neurophysiology, 119(6), 1335–1345. https://doi.org/10.1016/j.clinph.2008.02.020
  • Rossi, S., Lisini Baldi, T., Aggravi, M., Ulivelli, M., Cioncoloni, D., Niccolini, V., Donati, L., & Prattichizzo, D. (2020). Wearable haptic anklets for gait and freezing improvement in Parkinson’s disease: A proof-of-concept study. Neurological Sciences : Official Journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology, 41(12), 3643–3651. https://doi.org/10.1007/s10072-020-04485-4
  • Rossi-Izquierdo, M., Ernst, A., Soto-Varela, A., Santos-Pérez, S., Faraldo-García, A., Sesar-Ignacio, A., & Basta, D. (2013). Vibrotactile neurofeedback balance training in patients with Parkinson’s disease: Reducing the number of falls. Gait & Posture, 37(2), 195–200. https://doi.org/10.1016/j.gaitpost.2012.07.002
  • Sato, Y., & Kording, K. P. (2014). How much to trust the senses: Likelihood learning. Journal of Vision, 14(13), 13. https://doi.org/10.1167/14.13.13
  • Schalow, G., Zäch, G. A., & Warzok, R. (1995). Classification of human peripheral nerve fibre groups by conduction velocity and nerve fibre diameter is preserved following spinal cord lesion. Journal of the Autonomic Nervous System, 52(2–3), 125–150. https://doi.org/10.1016/0165-1838(94)00153-b
  • Schneider, S. A., Pleger, B., Draganski, B., Cordivari, C., Rothwell, J. C., Bhatia, K. P., & Dolan, R. J. (2010). Modulatory effects of 5Hz rTMS over the primary somatosensory cortex in focal dystonia-an fMRI-TMS study. Movement Disorders : Official Journal of the Movement Disorder Society, 25(1), 76–83. https://doi.org/10.1002/mds.22825
  • Scott, S. H. (2004). Optimal feedback control and the neural basis of volitional motor control. Nature Reviews. Neuroscience, 5(7), 532–546. https://doi.org/10.1038/nrn1427
  • Scott, S. H. (2012). The computational and neural basis of voluntary motor control and planning. Trends in Cognitive Sciences, 16(11), 541–549. https://doi.org/10.1016/j.tics.2012.09.008
  • Scott, S. H. (2016). A functional taxonomy of bottom-up sensory feedback processing for motor actions. Trends in Neurosciences, 39(8), 512–526. https://doi.org/10.1016/j.tins.2016.06.001
  • Sehm, B., Taubert, M., Conde, V., Weise, D., Classen, J., Dukart, J., Draganski, B., Villringer, A., & Ragert, P. (2014). Structural brain plasticity in Parkinson’s disease induced by balance training. Neurobiology of Aging, 35(1), 232–239. https://doi.org/10.1016/j.neurobiolaging.2013.06.021
  • Seidler, R. D., & Noll, D. C. (2008). Neuroanatomical correlates of motor acquisition and motor transfer. Journal of Neurophysiology, 99(4), 1836–1845. https://doi.org/10.1152/jn.01187.2007
  • Seiss, E., Hesse, C. W., Drane, S., Oostenveld, R., Wing, A. M., & Praamstra, P. (2002). Proprioception-related evoked potentials: Origin and sensitivity to movement parameters. NeuroImage, 17(1), 461–468. https://doi.org/10.1006/nimg.2002.1211
  • Shadmehr, R., & Krakauer, J. W. (2008). A computational neuroanatomy for motor control. Experimental Brain Research, 185(3), 359–381. https://doi.org/10.1007/s00221-008-1280-5
  • Shadmehr, R., Smith, M. A., & Krakauer, J. W. (2010). Error correction, sensory prediction, and adaptation in motor control. Annual Review of Neuroscience, 33, 89–108. https://doi.org/10.1146/annurev-neuro-060909-153135
  • Shaffer, S. W., & Harrison, A. L. (2007). Aging of the somatosensory system: A translational perspective. Physical Therapy, 87(2), 193–207. https://doi.org/10.2522/ptj.20060083
  • Sherman, D. A., Lehmann, T., Baumeister, J., Grooms, D. R., & Norte, G. E. (2022). Somatosensory perturbations influence cortical activity associated with single-limb balance performance. Experimental Brain Research, 240(2), 407–420. https://doi.org/10.1007/s00221-021-06260-z
  • Sherrington, C. (1906). The integrative action of the nervous system. Cambridge University Press.
  • Sidarta, A., Vahdat, S., Bernardi, N. F., & Ostry, D. J. (2016). Somatic and reinforcement-based plasticity in the initial stages of human motor learning. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 36(46), 11682–11692. https://doi.org/10.1523/JNEUROSCI.1767-16.2016
  • Smith, M. A., & Shadmehr, R. (2005). Intact ability to learn internal models of arm dynamics in Huntington’s disease but not cerebellar degeneration. Journal of Neurophysiology, 93(5), 2809–2821. https://doi.org/10.1152/jn.00943.2004
  • Sokhangu, M. K., Rahnama, N., Etemadifar, M., Rafeii, M., & Saberi, A. (2021). Effect of neuromuscular exercises on strength, proprioceptive receptors, and balance in females with multiple sclerosis. International Journal of Preventive Medicine, 12, 5. https://doi.org/10.4103/ijpvm.IJPVM_525_18
  • Sosnoff, J. J., Socie, M. J., Boes, M. K., Sandroff, B. M., Pula, J. H., Suh, Y., Weikert, M., Balantrapu, S., Morrison, S., & Motl, R. W. (2011). Mobility, balance and falls in persons with multiple sclerosis. PloS One, 6(11), e28021. https://doi.org/10.1371/journal.pone.0028021
  • Steffens, H., Dibaj, P., & Schomburg, E. D. (2012). In vivo measurement of conduction velocities in afferent and efferent nerve fibre groups in mice. Physiological Research, 61(2), 203–214. https://doi.org/10.33549/physiolres.932248
  • Sui, J., Jiang, R., Bustillo, J., & Calhoun, V. (2020). Neuroimaging-based individualized prediction of cognition and behavior for mental disorders and health: methods and promises. Biological Psychiatry, 88(11), 818–828. https://doi.org/10.1016/j.biopsych.2020.02.016
  • Swanik, C. B. (2015). Brains and sprains: The brain’s role in noncontact anterior cruciate ligament injuries. Journal of Athletic Training, 50(10), 1100–1102. https://doi.org/10.4085/1062-6050-50.10.08
  • Takeuchi, N., Chuma, T., Matsuo, Y., Watanabe, I., & Ikoma, K. (2005). Repetitive Transcranial magnetic stimulation of contralesional primary motor cortex improves hand function after stroke. Stroke, 36(12), 2681–2686. https://doi.org/10.1161/01.STR.0000189658.51972.34
  • Talelli, P., Greenwood, R. J., & Rothwell, J. C. (2007). Exploring Theta Burst Stimulation as an intervention to improve motor recovery in chronic stroke. Clinical Neurophysiology : Official Journal of the International Federation of Clinical Neurophysiology, 118(2), 333–342. https://doi.org/10.1016/j.clinph.2006.10.014
  • Tan, H. L., Jenkinson, N., & Brown, P. (2014). Dynamic neural correlates of motor error monitoring and adaptation during trial-to-trial learning. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 34(16), 5678–5688. https://doi.org/10.1523/JNEUROSCI.4739-13.2014
  • Tan, H. L., Wade, C., & Brown, P. (2016). Post-movement beta activity in sensorimotor cortex indexes confidence in the estimations from internal models. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 36(5), 1516–1528. https://doi.org/10.1523/JNEUROSCI.3204-15.2016
  • Tan, H., Zavala, B., Pogosyan, A., Ashkan, K., Zrinzo, L., Foltynie, T., Limousin, P., & Brown, P. (2014). Human subthalamic nucleus in movement error detection and its evaluation during visuomotor adaptation. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 34(50), 16744–16754. https://doi.org/10.1523/JNEUROSCI.3414-14.2014
  • Terao, Y., & Ugawa, Y. (2002). Basic mechanisms of TMS. Journal of Clinical Neurophysiology : Official Publication of the American Electroencephalographic Society, 19(4), 322–343. https://doi.org/10.1097/00004691-200208000-00006
  • Todorov, E. (2004). Optimality principles in sensorimotor control. Nature Neuroscience, 7(9), 907–915. https://doi.org/10.1038/nn1309
  • Todorov, E., & Jordan, M. I. (2002). Optimal feedback control as a theory of motor coordination. Nature Neuroscience, 5(11), 1226–1235. https://doi.org/10.1038/nn963
  • Topka, H., Konczak, J., Schneider, K., Boose, A., & Dichgans, J. (1998). Multijoint arm movements in cerebellar ataxia: Abnormal control of movement dynamics. Experimental Brain Research, 119(4), 493–503. https://doi.org/10.1007/s002210050365
  • Tresilian, J. R. (2012). Sensorimotor control and learning: An introduction to the behavioral neuroscience of action. Palgrave Macmillan.
  • Uzlaşır, S., Özdıraz, K. Y., Dağ, O., & Tunay, V. B. (2021). The effects of stroboscopic balance training on cortical activities in athletes with chronic ankle instability. Physical Therapy in Sport : Official Journal of the Association of Chartered Physiotherapists in Sports Medicine, 50, 50–58. https://doi.org/10.1016/j.ptsp.2021.03.014
  • van Hedel, H. J. A., & Dietz, V. (2004). The influence of age on learning a locomotor task. Clinical Neurophysiology : Official Journal of the International Federation of Clinical Neurophysiology, 115(9), 2134–2143. https://doi.org/10.1016/j.clinph.2004.03.029
  • Vargas, L., Huang, H., Zhu, Y., & Hu, X. G. (2021). Static and dynamic proprioceptive recognition through vibrotactile stimulation. Journal of Neural Engineering, 18(4), 046093. https://doi.org/10.1088/1741-2552/ac0d43
  • Ventura de Oliveira, J. R., Romano-Silva, M. A., Ugrinowitsch, H., Apolinário-Souza, T., Fernandes, L. A., Parma, J. O., & Lage, G. M. (2019). Cathodal tDCS of the left posterior parietal cortex increases proprioceptive drift. Journal of Motor Behavior, 51(3), 272–280. https://doi.org/10.1080/00222895.2018.1468311
  • Viana, R. T., Laurentino, G. E. C., Souza, R. J. P., Fonseca, J. B., Silva Filho, E. M., Dias, S. N., Teixeira-Salmela, L. F., & Monte-Silva, K. K. (2014). Effects of the addition of transcranial direct current stimulation to virtual reality therapy after stroke: A pilot randomized controlled trial. NeuroRehabilitation, 34(3), 437–446. https://doi.org/10.3233/NRE-141065
  • Vidoni, E. D., & Boyd, L. A. (2009). Preserved motor learning after stroke is related to the degree of proprioceptive deficit. Behavioral and Brain Functions, 5(1), 36. https://doi.org/10.1186/1744-9081-5-36
  • Virk, S., & McConville, K. M. V. (2006). Virtual reality applications in improving postural control and minimizing falls. In 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (Vols. 1–15, 5997). IEEE.
  • Wang, Y., & Wang, A. (2017). Augmented reality based upper limb rehabilitation system (pp. 426–430). IEEE.
  • Webster, B. R., Celnik, P. A., & Cohen, L. G. (2006). Noninvasive brain stimulation in stroke rehabilitation. NeuroRx : The Journal of the American Society for Experimental NeuroTherapeutics, 3(4), 474–481. https://doi.org/10.1016/j.nurx.2006.07.008
  • Whittier, T. T., Weller, Z. D., & Fling, B. W. (2022). I can step clearly now, the TENS is on: Transcutaneous electric nerve stimulation decreases sensorimotor uncertainty during stepping movements. Sensors (Basel), 22(14), 5442. https://doi.org/10.3390/s22145442
  • Wilkins, L., & Appelbaum, L. G. (2020). An early review of stroboscopic visual training: Insights, challenges and accomplishments to guide future studies. International Review of Sport and Exercise Psychology, 13(1), 65–80. https://doi.org/10.1080/1750984X.2019.1582081
  • Wilkins, L., & Gray, R. (2015). Effects of stroboscopic visual training on visual attention, motion perception, and catching performance. Perceptual and Motor Skills, 121(1), 57–79. https://doi.org/10.2466/22.25.PMS.121c11x0
  • Williams, P. S., Hoffman, R. L., & Clark, B. C. (2013). Preliminary evidence that anodal transcranial direct current stimulation enhances time to task failure of a sustained submaximal contraction. PLoS One. 8(12), e81418. https://doi.org/10.1371/journal.pone.0081418
  • Wohl, T. R., Criss, C. R., & Grooms, D. R. (2021). Visual perturbation to enhance return to sport rehabilitation after anterior cruciate ligament injury: A clinical commentary. International Journal of Sports Physical Therapy, 16(2), 552–564.
  • Wolpert, D. M. (2007). Probabilistic models in human sensorimotor control. Human Movement Science, 26(4), 511–524. https://doi.org/10.1016/j.humov.2007.05.005
  • Wolpert, D. M., Diedrichsen, J., & Flanagan, J. R. (2011). Principles of sensorimotor learning. Nature Reviews. Neuroscience, 12(12), 739–751. https://doi.org/10.1038/nrn3112
  • Wolpert, D. M., Miall, R. C., & Kawato, M. (1998). Internal models in the cerebellum. Trends in Cognitive Sciences, 2(9), 338–347. https://doi.org/10.1016/s1364-6613(98)01221-2
  • Workman, C. D., Kamholz, J., & Rudroff, T. (2019). Transcranial direct current stimulation (tDCS) to improve gait in multiple sclerosis: A timing window comparison. Frontiers in Human Neuroscience, 13, 1–7. https://doi.org/10.3389/fnhum.2019.00420
  • Wulf, G. (2013). Attentional focus and motor learning: A review of 15 years. International Review of Sport and Exercise Psychology, 6(1), 77–104. https://doi.org/10.1080/1750984X.2012.723728
  • Yagihashi, S., Mizukami, H., & Sugimoto, K. (2011). Mechanism of diabetic neuropathy: Where are we now and where to go? Journal of Diabetes Investigation, 2(1), 18–32. https://doi.org/10.1111/j.2040-1124.2010.00070.x
  • Yarrow, K., Brown, P., & Krakauer, J. W. (2009). Inside the brain of an elite athlete: The neural processes that support high achievement in sports. Nature Reviews. Neuroscience, 10(8), 585–596. https://doi.org/10.1038/nrn2672
  • York, R. M., Perell-Gerson, K. L., Barr, M., Durham, J., & Roper, J. M. (2009). Motor learning of a gait pattern to reduce forefoot plantar pressures in individuals with diabetic peripheral neuropathy. PM & R : The Journal of Injury, Function, and Rehabilitation, 1(5), 434–441. https://doi.org/10.1016/j.pmrj.2009.03.001
  • Young, D. R., Parikh, P. J., & Layne, C. S. (2020a). Non-invasive brain stimulation of the posterior parietal cortex alters postural adaptation. Frontiers in Human Neuroscience, 14, 248. https://doi.org/10.3389/fnhum.2020.00248
  • Young, D. R., Parikh, P. J., & Layne, C. S. (2020b). The posterior parietal cortex is involved in gait adaptation: A bilateral transcranial direct current stimulation study. Frontiers in Human Neuroscience, 14, 581026–581026. https://doi.org/10.3389/fnhum.2020.581026
  • Yunus, R., Ali, S., Ayaz, Y., Khan, M., Kanwal, S., Akhlaque, U., & Nawaz, R. (2020). Development and testing of a wearable vibrotactile haptic feedback system for proprioceptive rehabilitation. IEEE Access, 8, 35172–35184. https://doi.org/10.1109/ACCESS.2020.2975149
  • Zavala, B., Tan, H., Little, S., Ashkan, K., Green, A. L., Aziz, T., Foltynie, T., Zrinzo, L., Zaghloul, K., & Brown, P. (2016). Decisions made with less evidence involve higher levels of corticosubthalamic nucleus theta band synchrony. Journal of Cognitive Neuroscience, 28(6), 811–825. https://doi.org/10.1162/jocn_a_00934

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.