120
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effect of Virtual Reality Upper Limb Rehabilitation Training on Older Adults

, , , &
Pages 393-406 | Received 23 May 2022, Accepted 08 Jan 2024, Published online: 19 Jan 2024

References

  • Adhikarla, V. K., Sodnik, J., Szolgay, P., & Jakus, G. (2015). Exploring direct 3D interaction for full horizontal parallax light field displays using leap motion controller. Sensors (Basel, Switzerland), 15(4), 8642–8663. https://doi.org/10.3390/S150408642
  • Aniansson, A., Rundgren, A., & Sperling, L. (1980). Evaluation of functional capacity in activities of daily living in 70-year-old men and women. Scandinavian Journal of Rehabilitation Medicine, 12(4), 145–154. https://europepmc.org/article/med/7268322
  • Bohil, C. J., Alicea, B., & Biocca, F. A. (2011). Virtual reality in neuroscience research and therapy. Nature Reviews. Neuroscience, 12(12), 752–762. https://doi.org/10.1038/nrn3122
  • Bonnal, J., Monnet, F., Le, B. T., Pila, O., Grosmaire, A. G., Ozsancak, C., Duret, C., & Auzou, P. (2022). Relation between cortical activation and effort during robot-mediated walking in healthy people: A Functional Near-Infrared Spectroscopy Neuroimaging Study (fNIRS). Sensors (Basel, Switzerland), 22(15), 5542. https://doi.org/10.3390/S22155542
  • Brunetti, M., Morkisch, N., Fritzsch, C., Mehnert, J., Steinbrink, J., Niedeggen, M., & Dohle, C. (2015). Potential determinants of efficacy of mirror therapy in stroke patients – A pilot study. Restorative Neurology and Neuroscience, 33(4), 421–434. https://doi.org/10.3233/RNN-140421
  • Buma, F. E., van Kordelaar, J., Raemaekers, M., van Wegen, E. E. H., Ramsey, N. F., & Kwakkel, G. (2016). Brain activation is related to smoothness of upper limb movements after stroke. Experimental Brain Research, 234(7), 2077–2089. https://doi.org/10.1007/S00221-015-4538-8
  • Chatterjee, K., Buchanan, A., Cottrell, K., Hughes, S., Day, T. W., & John, N. W. (2022). Immersive Virtual Reality for the Cognitive Rehabilitation of Stroke Survivors. IEEE Transactions on Neural Systems and Rehabilitation Engineering: A Publication of the IEEE Engineering in Medicine and Biology Society, 30, 719–728. https://doi.org/10.1109/TNSRE.2022.3158731
  • Chen, Z. J., He, C., Xia, N., Gu, M. H., Li, Y. A., Xiong, C. H., Xu, J., & Huang, X. L. (2021). Association Between Finger-to-Nose Kinematics and Upper Extremity Motor Function in Subacute Stroke: A Principal Component Analysis. Frontiers in Bioengineering and Biotechnology, 9(April), 660015. https://doi.org/10.3389/fbioe.2021.660015
  • Cornelis, N., Chatzinikolaou, P., Buys, R., Fourneau, I., Claes, J., & Cornelissen, V. (2021). The Use of Near Infrared Spectroscopy to Evaluate the Effect of Exercise on Peripheral Muscle Oxygenation in Patients with Lower Extremity Artery Disease: A Systematic Review. European Journal of Vascular and Endovascular Surgery: The Official Journal of the European Society for Vascular Surgery, 61(5), 837–847. https://doi.org/10.1016/J.EJVS.2021.02.008
  • Costello, M. C., Bloesch, E. K., Davoli, C. C., Panting, N. D., Abrams, R. A., & Brockmole, J. R. (2015). Spatial representations in older adults are not modified by action: Evidence from tool use. Psychology and Aging, 30(3), 656–668. https://doi.org/10.1037/PAG0000029
  • de Lima-Pardini, A. C., Zimeo Morais, G. A., Balardin, J. B., Coelho, D. B., Azzi, N. M., Teixeira, L. A., & Sato, J. R. (2017). Measuring cortical motor hemodynamics during assisted stepping – An fNIRS feasibility study of using a walker. Gait & Posture, 56, 112–118. https://doi.org/10.1016/J.GAITPOST.2017.05.018
  • Delorme, M., Vergotte, G., Perrey, S., Froger, J., & Laffont, I. (2019). Time course of sensorimotor cortex reorganization during upper extremity task accompanying motor recovery early after stroke: An fNIRS study. Restorative Neurology and Neuroscience, 37(3), 207–218. https://doi.org/10.3233/RNN-180877
  • Dias, P., Silva, R., Amorim, P., Lains, J., Roque, E., Pereira, I. S. F., Pereira, F., Santos, B. S., & Potel, M. (2019). Using virtual reality to increase motivation in poststroke rehabilitation: VR therapeutic mini-games help in poststroke recovery. IEEE Computer Graphics and Applications, 39(1), 64–70. https://doi.org/10.1109/MCG.2018.2875630
  • Dodd, K. C., Nair, V. A., & Prabhakaran, V. (2017). Role of the contralesional vs. Ipsilesional hemisphere in stroke recovery. Frontiers in Human Neuroscience, 11(September), 469. https://doi.org/10.3389/fnhum.2017.00469
  • Feigin, V. L., Stark, B. A., Johnson, C. O., Roth, G. A., Bisignano, C., Abady, G. G., Abbasifard, M., Abbasi-Kangevari, M., Abd-Allah, F., Abedi, V., Abualhasan, A., Abu-Rmeileh, N. M., Abushouk, A. I., Adebayo, O. M., Agarwal, G., Agasthi, P., Ahinkorah, B. O., Ahmad, S., Ahmadi, S., … Murray, C. J. L. (2021). Global, regional, and national burden of stroke and its risk factors, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. The Lancet Neurology, 20(10), 795–820. https://doi.org/10.1016/S1474-4422(21)00252-0
  • Guna, J., Jakus, G., Pogačnik, M., Tomažič, S., & Sodnik, J. (2014). An analysis of the precision and reliability of the leap motion sensor and its suitability for static and dynamic tracking. Sensors, 14(2), 3702–3720. https://doi.org/10.3390/S140203702
  • Hillman, E. M. C. (2014). Coupling mechanism and significance of the BOLD signal: A status report. Annual Review of Neuroscience, 37(1), 161–181. https://doi.org/10.1146/annurev-neuro-071013-014111
  • Howard, M. C. (2017). A meta-analysis and systematic literature review of virtual reality rehabilitation programs. Computers in Human Behavior, 70, 317–327. https://doi.org/10.1016/j.chb.2017.01.013
  • Howard, M. W., Fotedar, M. S., Datey, A. V., & Hasselmo, M. E. (2005). The temporal context model in spatial navigation and relational learning: Toward a common explanation of medial temporal lobe function across domains. Psychological Review, 112(1), 75–116. https://doi.org/10.1037/0033-295X.112.1.75
  • Hsu, E. B., Li, Y., Bayram, J. D., Levinson, D., Yang, S., & Monahan, C. (2013). State of virtual reality based disaster preparedness and response training. PLoS Currents, 5, ecurrents.dis.1ea2b2e71237d5337fa53982a38b2aff. https://doi.org/10.1371/CURRENTS.DIS.1EA2B2E71237D5337FA53982A38B2AFF
  • Huang, K. T. (2020). Exergaming executive functions: an immersive virtual reality-based cognitive training for adults aged 50 and older. Cyberpsychology, Behavior and Social Networking, 23(3), 143–149. https://doi.org/10.1089/cyber.2019.0269
  • Huo, C., Xu, G., Li, W., Xie, H., Zhang, T., Liu, Y., & Li, Z. (2021). A review on functional near-infrared spectroscopy and application in stroke rehabilitation. Medicine in Novel Technology and Devices, 11, 100064. https://doi.org/10.1016/j.medntd.2021.100064
  • Hussain, N., Sunnerhagen, K. S., & Alt Murphy, M. (2019). End-point kinematics using virtual reality explaining upper limb impairment and activity capacity in stroke. Journal of Neuroengineering and Rehabilitation, 16(1), 82. https://doi.org/10.1186/s12984-019-0551-7
  • Jäncke, L., Cheetham, M., & Baumgartner, T. (2009). Virtual reality and the role of the prefrontal cortex in adults and children. In. Frontiers in Neuroscience, 3(1), 52–59. (Frontiers. https://doi.org/10.3389/neuro.01.006.2009
  • Karni, A., Meyer, G., Jezzard, P., Adams, M. M., Turner, R., & Ungerleider, L. G. (1995). Functional MRI evidence for adult motor cortex plasticity during motor skill learning. Nature, 377(6545), 155–158. https://doi.org/10.1038/377155a0
  • Kennedy, K. M., & Raz, N. (2005). Age, sex and regional brain volumes predict perceptual-motor skill acquisition. Cortex; a Journal Devoted to the Study of the Nervous System and Behavior, 41(4), 560–569. https://doi.org/10.1016/S0010-9452(08)70196-5
  • Kinoshita, S., Tamashiro, H., Okamoto, T., Urushidani, N., & Abo, M. (2019). Association between imbalance of cortical brain activity and successful motor recovery in sub-acute stroke patients with upper limb hemiparesis: A functional near-infrared spectroscopy study. Neuroreport, 30(12), 822–827. https://doi.org/10.1097/WNR.0000000000001283
  • Kloiber, S., Settgast, V., Schinko, C., Weinzerl, M., Fritz, J., Schreck, T., & Preiner, R. (2020). Immersive analysis of user motion in VR applications. The Visual Computer, 36(10-12), 1937–1949. https://doi.org/10.1007/s00371-020-01942-1
  • Langhorne, P., Coupar, F., & Pollock, A. (2009). Motor recovery after stroke: A systematic review. The Lancet. Neurology, 8(8), 741–754. https://doi.org/10.1016/S1474-4422(09)70150-4
  • Levin, M. F. (2011). Can virtual reality offer enriched environments for rehabilitation? Expert Review of Neurotherapeutics, 11(2), 153–155. https://doi.org/10.1586/ern.10.201
  • Liao, M.-J., Jagacinski, R. J., & Greenberg, N. (1997). Quantifying the performance limitations of older and younger adults in a target acquisition task. Journal of Experimental Psychology. Human Perception and Performance, 23(6), 1644–1664. https://doi.org/10.1037//0096-1523.23.6.1644
  • Liu, Z., Zhang, M., Xu, G., Huo, C., Tan, Q., Li, Z., & Yuan, Q. (2017). Effective connectivity analysis of the brain network in drivers during actual driving using near-infrared spectroscopy. Frontiers in Behavioral Neuroscience, 11(October), 211. https://doi.org/10.3389/fnbeh.2017.00211
  • Miyara, K., Kawamura, K., Matsumoto, S., Ohwatashi, A., Itashiki, Y., Uema, T., Noma, T., Ikeda, K., & Shimodozono, M. (2020). Acute changes in cortical activation during active ankle movement after whole-body vibration for spasticity in hemiplegic legs of stroke patients: A functional near-infrared spectroscopy study. Topics in Stroke Rehabilitation, 27(1), 67–74. https://doi.org/10.1080/10749357.2019.1659639
  • Mochizuki, G., Hoque, T., Mraz, R., MacIntosh, B. J., Graham, S. J., Black, S. E., Staines, W. R., & McIlroy, W. E. (2009). Challenging the brain: Exploring the link between effort and cortical activation. Brain Research, 1301, 9–19. https://doi.org/10.1016/J.BRAINRES.2009.09.005
  • Newell, K. M., Vaillancourt, D. E., & Sosnoff, J. J. (2006). Aging, complexity, and motor performance. In Handbook of the Psychology of Aging (pp. 163–182). Academic Press. https://doi.org/10.1016/B978-012101264-9/50011-2
  • Sampson, M., Shau, Y. W., & James King, M. (2012). Bilateral upper limb trainer with virtual reality for post-stroke rehabilitation: Case series report. Disability and Rehabilitation. Assistive Technology, 7(1), 55–62. https://doi.org/10.3109/17483107.2011.562959
  • Schwarz, A., Kanzler, C. M., Lambercy, O., Luft, A. R., & Veerbeek, J. M, Contributed equally. (2019). Systematic review on kinematic assessments of upper limb movements after stroke. Stroke, 50(3), 718–727. https://doi.org/10.1161/STROKEAHA.118.023531
  • Seidler, R. D., Bernard, J. A., Burutolu, T. B., Fling, B. W., Gordon, M. T., Gwin, J. T., Kwak, Y., & Lipps, D. B. (2010). Motor control and aging: links to age-related brain structural, functional, and biochemical effects. Neuroscience and Biobehavioral Reviews, 34(5), 721–733. https://doi.org/10.1016/J.NEUBIOREV.2009.10.005
  • Shirinbayan, S. I., Dreyer, A. M., & Rieger, J. W. (2018). Cortical and subcortical areas involved in the regulation of reach movement speed in the human brain: An fMRI study. Human Brain Mapping, 40(1), 151–162. https://doi.org/10.1002/HBM.24361
  • Uga, M., Dan, I., Sano, T., Dan, H., & Watanabe, E. (2014). Optimizing the general linear model for functional near-infrared spectroscopy: An adaptive hemodynamic response function approach. Neurophotonics, 1(1), 015004. https://doi.org/10.1117/1.nph.1.1.015004
  • Wang, Y. J., Li, Z. X., Gu, H. Q., Zhai, Y., Jiang, Y., Zhao, X. Q., Wang, Y. L., Yang, X., Wang, C. J., Meng, X., Li, H., Liu, L. P., Jing, J., Wu, J., Xu, A. D., Dong, Q., Wang, D., & Zhao, J. Z, China Stroke Statistics 2019 Writing Committee (2020). China stroke statistics 2019: A Report from the National Center for Healthcare Quality Management in Neurological Diseases, China National Clinical Research Center for Neurological Diseases, the Chinese Stroke Association, National Center for Chronic and and Non-communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention and Institute for Global Neuroscience and Stroke Collaborations. Stroke and Vascular Neurology, 5(3), 211–239. https://doi.org/10.1136/svn-2020-000457
  • Wang, Z. R., Wang, P., Xing, L., Mei, L. P., Zhao, J., & Zhang, T. (2017). Leap Motion-based virtual reality training for improving motor functional recovery of upper limbs and neural reorganization in subacute stroke patients. Neural Regeneration Research, 12(11), 1823–1831. https://doi.org/10.4103/1673-5374.219043
  • Weiss Cohen, M., & Regazzoni, D. (2020). Hand rehabilitation assessment system using leap motion controller. AI & Society, 35(3), 581–594. https://doi.org/10.1007/s00146-019-00925-8
  • WHO. (2021). Decade of Healthy Ageing: Baseline Report. WHO.
  • Winstein, C., Wing, A. M., & Whitall, J. (2003). Motor control and learning principles for rehabilitation of upper limb movements after brain injury. Handbook of Neuropsychology, 9, 77–137.
  • Wishart, L. R., & Lee, T. D. (1997). Effects of aging and reduced relative frequency of knowledge of results on learning a motor skill. Perceptual and Motor Skills, 84(3 Pt 1), 1107–1122. https://doi.org/10.2466/pms.1997.84.3.1107
  • Wishart, L. R., Lee, T. D., Cunningham, S. J., & Murdoch, J. E. (2002). Age-related differences and the role of augmented visual feedback in learning a bimanual coordination pattern. Acta Psychologica, 110(2-3), 247–263. https://doi.org/10.1016/S0001-6918(02)00036-7
  • Zhang, N., Yuan, X., Li, Q., Wang, Z., Gu, X., Zang, J., Ge, R., Liu, H., Fan, Z., & Bu, L. (2021). The effects of age on brain cortical activation and functional connectivity during video game-based finger-to-thumb opposition movement: A functional near-infrared spectroscopy study. Neuroscience Letters, 746(December 2020), 135668. https://doi.org/10.1016/j.neulet.2021.135668
  • Zhu, X., Yin, S., Lang, M., He, R., & Li, J. (2016). The more the better? A meta-analysis on effects of combined cognitive and physical intervention on cognition in healthy older adults. Ageing Research Reviews, 31, 67–79. https://doi.org/10.1016/J.ARR.2016.07.003

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.