86
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Short-Term Modulation of Online Monocular Visuomotor Function

, ORCID Icon & ORCID Icon
Pages 407-416 | Received 28 Apr 2023, Accepted 11 Jan 2024, Published online: 26 Jan 2024

References

  • Bourassa, D. C., McManus, I. C., & Bryden, M. P. (1996). Handedness and eye-dominance: A meta-analysis of their relationship. Laterality, 1(1), 5–34. https://doi.org/10.1080/713754206
  • Bryden, P. J., Roy, E. A., Rohr, L. E., & Egilo, S. (2007). Task demands affect manual asymmetries in pegboard performance. Laterality, 12(4), 364–377. https://doi.org/10.1080/13576500701356244
  • Carson, R. G., Goodman, D., Chua, R., & Elliott, D. (1993). Asymmetries in the regulation of visually guided aiming. Journal of Motor Behavior, 25(1), 21–32. https://doi.org/10.1080/00222895.1993.9941636
  • Cavill, S., & Bryden, P. (2003). Development of handedness: Comparison of questionnaire and performance-based measures of preference. Brain and Cognition, 53(2), 149–151. https://doi.org/10.1016/S0278-2626(03)00098-8
  • Chapman, C. S., Gallivan, J. P., Wood, D. K., Milne, J. L., Culham, J. C., & Goodale, M. A. (2010). Short-term motor plasticity revealed in a visuomotor decision-making task. Behavioural Brain Research, 214(1), 130–134. https://doi.org/10.1016/j.bbr.2010.05.012
  • Chaumillon, R., Alahyane, N., Senot, P., Vergne, J., Lemoine-Lardennois, C., Blouin, J., Doré-Mazars, K., Guillaume, A., & Vergilino-Perez, D. (2017). Asymmetry in visual information processing depends on the strength of eye dominance. Neuropsychologia, 96, 129–136. https://doi.org/10.1016/j.neuropsychologia.2017.01.015
  • Chaumillon, R., Blouin, J., & Guillaume, A. (2014). Eye dominance influences triggering action: The Poffenberger paradigm revisited. Cortex; a Journal Devoted to the Study of the Nervous System and Behavior, 58, 86–98. https://doi.org/10.1016/j.cortex.2014.05.009
  • Coren, S. (1999). Sensorimotor performance as a function of eye dominance and handedness. Perceptual and Motor Skills, 88(2), 424–426. https://doi.org/10.2466/pms.1999.88.2.424
  • Coren, S., & Porac, C. (1982). Monocular asymmetries in visual latency as a function of sighting dominance. American Journal of Optometry and Physiological Optics, 59(12), 987–990. https://doi.org/10.1097/00006324-198212000-00009
  • Elliott, D., Hansen, S., Grierson, L. E. M., Lyons, J., Bennett, S. J., & Hayes, S. J. (2010). Goal-directed aiming: Two components but multiple processes. Psychological Bulletin, 136(6), 1023–1044. https://doi.org/10.1037/a0020958
  • Elliott, D., Lyons, J., Hayes, S. J., Burkitt, J. J., Roberts, J. W., Grierson, L. E. M., Hansen, S., & Bennett, S. J. (2017). The multiple process model of goal-directed reaching revisited. Neuroscience and Biobehavioral Reviews, 72, 95–110. https://doi.org/10.1016/j.neubiorev.2016.11.016
  • Floyer-Lea, A., & Matthews, P. M. (2004). Changing brain networks for visuomotor control with increased movement automaticity. Journal of Neurophysiology, 92(4), 2405–2412. https://doi.org/10.1152/jn.01092.2003
  • Floyer-Lea, A., Wylezinska, M., Kincses, T., & Matthews, P. M. (2006). Rapid modulation of GABA concentration in human sensorimotor cortex during motor learning. Journal of Neurophysiology, 95(3), 1639–1644. https://doi.org/10.1152/jn.00346.2005
  • Fu, M., & Zuo, Y. (2011). Experience-dependent structural plasticity in the cortex. Trends in Neurosciences, 34(4), 177–187. https://doi.org/10.1016/j.tins.2011.02.001
  • Goodale, M. A., Pelisson, D., & Prablanc, C. (1986). Large adjustments in visually guided reaching do not depend on vision of the hand or perception of target displacement. Nature, 320(6064), 748–750. https://doi.org/10.1038/320748a0
  • Goodman, R., Crainic, V. A., Bested, S. R., Wijeyaratnam, D. O., De Grosbois, J., & Tremblay, L. (2018). Amending ongoing upper-limb reaches: Visual and proprioceptive contributions? Multisensory Research, 31(5), 455–480. https://doi.org/10.1163/22134808-00002615
  • Goodman, R., & Tremblay, L. (2018). Using proprioception to control ongoing actions: Dominance of vision or altered proprioceptive weighing? Experimental Brain Research, 236(7), 1897–1910. https://doi.org/10.1007/s00221-018-5258-7
  • Hofstetter, S., Tavor, I., Moryosef, S. T., & Assaf, Y. (2013). Short-term learning induces white matter plasticity in the fornix. Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 33(31), 12844–12850. https://doi.org/10.1523/JNEUROSCI.4520-12.2013
  • Jongbloed-Pereboom, M., Nijhuis-van der Sanden, M. W. G., & Steenbergen, B. (2019). Explicit and implicit motor sequence learning in children and adults; the role of age and visual working memory. Human Movement Science, 64, 1–11. https://doi.org/10.1016/j.humov.2018.12.007
  • Keele, S. W., & Posner, M. I. (1968). Processing of visual feedback in rapid movements. Journal of Experimental Psychology, 77(1), 155–158. https://doi.org/10.1037/h0025754
  • Keller, T. A., & Just, M. A. (2016). Structural and functional neuroplasticity in human learning of spatial routes. NeuroImage, 125, 256–266. https://doi.org/10.1016/j.neuroimage.2015.10.015
  • Kennedy, A., Bhattacharjee, A., Hansen, S., Reid, C., & Tremblay, L. (2015). Online vision as a function of real-time limb velocity: Another case for optimal windows. Journal of Motor Behavior, 47(6), 465–475. https://doi.org/10.1080/00222895.2015.1012579
  • Li, J., Lam, C. S. Y., Yu, M., Hess, R. F., Chan, L. Y. L., Maehara, G., Woo, G. C., & Thompson, B. (2010). Quantifying sensory eye dominance in the normal visual system: A new technique and insights into variation across traditional tests. Investigative Ophthalmology & Visual Science, 51(12), 6875–6881. https://doi.org/10.1167/iovs.10-5549
  • Loria, T., Manzone, D., Crainic, V., & Tremblay, L. (2019). Ipsilateral eye contributions to online visuomotor control of right upper-limb movements. Human Movement Science, 66, 407–415. https://doi.org/10.1016/j.humov.2019.05.014
  • Mann, D. L., Runswick, O. R., & Allen, P. M. (2016). Hand and eye dominance in sport: Are cricket batters taught to bat back-to-front? Sports Medicine (Auckland, N.Z.), 46(9), 1355–1363. https://doi.org/10.1007/s40279-016-0516-y
  • Manzone, D., Loria, T., & Tremblay, L. (2018). I spy with my dominant eye. Journal of Motor Behavior, 50(3), 330–342. https://doi.org/10.1080/00222895.2017.1363693
  • Mapp, A. P., Ono, H., & Barbeito, R. (2003). What does the dominant eye dominate? A brief and somewhat contentious review. Perception & Psychophysics, 65(2), 310–317. https://doi.org/10.3758/bf03194802
  • Miles, W. R. (1930). Ocular dominance in human adults. Journal of General Psychology, 3(3), 412–430. https://doi.org/10.1080/00221309.1930.9918218
  • Ooi, T. L., & He, Z. J. (2020). Sensory eye dominance: Relationship between eye and brain. In Eye and brain (Vol. 12, pp. 25–31). Dove Medical Press. https://doi.org/10.2147/EB.S176931
  • Poffenberger, A. T. (1912). Reaction time to retinal stimulation with special reference to the time lost in conduction through nerve centers. Archives of Psychology, 23, 1–73.
  • Porac, C., & Coren, S. (1976). The dominant eye. Psychological bulletin, 83(5), 880–897. (https://doi.org/10.1037//0033-2909.83.5.880
  • Prablanc, C., Echallier, J. E., Jeannerod, M., & Komilis, E. (1979). Optimal response of eye and hand motor systems in pointing at a visual target – II. Static and dynamic visual cues in the control of hand movement. Biological Cybernetics, 35(3), 183–187. https://doi.org/10.1007/BF00337063
  • Przybyla, A., Good, D. C., & Sainburg, R. L. (2012). Dynamic dominance varies with handedness: Reduced interlimb asymmetries in left-handers. Experimental Brain Research, 216(3), 419–431. https://doi.org/10.1007/s00221-011-2946-y
  • Purves, D., & Lotto, R. B. (2003). Why we see what we do: An empirical theory of vision. Sinauer Associates.
  • Reber, P. J. (2013). The neural basis of implicit learning and memory: A review of neuropsychological and neuroimaging research. Neuropsychologia, 51(10), 2026–2042. https://doi.org/10.1016/j.neuropsychologia.2013.06.019
  • Sagi, Y., Tavor, I., Hofstetter, S., Tzur-Moryosef, S., Blumenfeld-Katzir, T., & Assaf, Y. (2012). Learning in the fast lane: New insights into neuroplasticity. Neuron, 73(6), 1195–1203. https://doi.org/10.1016/j.neuron.2012.01.025
  • Schmidt, R. A., Lee, T. D., Winstein, C., Wulf, G., & Zelaznik, H. N. (2018). Motor control and learning: A behavioral emphasis (6th ed.). Human kinetics.
  • Stee, W., & Peigneux, P. (2021). Post-learning micro- and macro-structural neuroplasticity changes with time and sleep. In Biochemical pharmacology (Vol. 191). Elsevier. https://doi.org/10.1016/j.bcp.2020.114369
  • Tagawa, Y., Kanold, P. O., Majdan, M., & Shatz, C. J. (2005). Multiple periods of functional ocular dominance plasticity in mouse visual cortex. Nature Neuroscience, 8(3), 380–388. https://doi.org/10.1038/nn1410
  • Tavor, I., Botvinik-Nezer, R., Bernstein-Eliav, M., Tsarfaty, G., & Assaf, Y. (2020). Short-term plasticity following motor sequence learning revealed by diffusion magnetic resonance imaging. Human Brain Mapping, 41(2), 442–452. https://doi.org/10.1002/hbm.24814
  • Tavor, I., Hofstetter, S., & Assaf, Y. (2013). Micro-structural assessment of short term plasticity dynamics. NeuroImage, 81, 1–7. https://doi.org/10.1016/j.neuroimage.2013.05.050
  • Taylor, J. A., Wojaczynski, G. J., & Ivry, R. B. (2011). Trial-by-trial analysis of intermanual transfer during visuomotor adaptation. Journal of Neurophysiology, 106(6), 3157–3172. https://doi.org/10.1152/jn.01008.2010.-Studies
  • Tremblay, L., Crainic, V. A., de Grosbois, J., Bhattacharjee, A., Kennedy, A., Hansen, S., & Welsh, T. N. (2017). An optimal velocity for online limb-target regulation processes? Experimental Brain Research, 235(1), 29–40. https://doi.org/10.1007/s00221-016-4770-x
  • von Bernhardi, R., Eugenín-von Bernhardi, L., & Eugenín, J. (2017). What is neural plasticity? In R. von Bernhardi, J. Eugenín, & K. J. Muller (Eds.), The Plastic Brain (pp. 1–18). Springer.
  • Wolpert, D. M., & Ghahramani, Z. (2000). Computational principles of motor neuroscience. Nature Neuroscience, 3 Suppl(S11), 1212–1217. https://doi.org/10.1038/81497
  • Woodworth, R. S. (1899). The accuracy of voluntary movement. Journal of Nervous and Mental Disease, 26(12), 743–752. https://doi.org/10.1097/00005053-189912000-00005
  • Yang, E., Blake, R., & McDonald, J. E. (2010). A new interocular suppression technique for measuring sensory eye dominance. Investigative Ophthalmology & Visual Science, 51(1), 588–593. https://doi.org/10.1167/iovs.08-3076
  • Zelaznik, H. N., Hawkins, B., & Kisselburgh, L. (1983). Rapid visual feedback processing in single-aiming movements. Journal of Motor Behavior, 15(3), 217–236. https://doi.org/10.1080/00222895.1983.10735298
  • Zhou, J., Reynaud, A., & Hess, R. F. (2014). Real-time modulation of perceptual eye dominance in humans. Proceedings of the Royal Society B: Biological Sciences, 281(1795), 20141717. https://doi.org/10.1098/rspb.2014.1717

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.