509
Views
6
CrossRef citations to date
0
Altmetric
Article

Correction of count-loss effect in neutron correlation methods that employ single neutron counting system for subcriticality measurement

&
Pages 766-782 | Received 17 Oct 2013, Accepted 06 Mar 2014, Published online: 15 Apr 2014

References

  • Thie JA. Reactor noise. New York (NY): Rowman & Littlefield; 1963.
  • Pacilio N. Reactor-noise analysis in the time domain (TID-24512). Oak Ridge (TN): US Atomic Energy Commission/Division of Technical Information; 1969.
  • Saito K. Rozatsuon-no-riron (I) [Theory of reactor noise (I)] (JAERI 1187). Tokyo: Japan Atomic Energy Research Institute; 1970.
  • Uhrig RE. Random noise techniques in nuclear reactor systems. New York (NY): Ronald Press; 1970.
  • Otsuka M. Genshiro-butsuri [Nuclear reactor physics]. Tokyo: Kyoritsu Shuppan; 1972.
  • Williams MMR. Random processes in nuclear reactors. Oxford: Pergamon Press; 1974.
  • Pázsit I, Pál L. Neutron fluctuations: a treatise on the physics of branching processes. Amsterdam: Elsevier; 2008.
  • Feynman RP, de Hoffman F, Serber R. Dispersion of the neutron emission in U-235 fission. J Nucl Energy. 1956;3:64–69.
  • Orndoff JD. Prompt neutron periods of metal critical assemblies. Nucl Sci Eng. 1957;2:450–460.
  • Albrecht RW. The measurement of dynamic nuclear reactor parameters using the variance of the number of neutrons detected. Nucl Sci Eng. 1962;14:153–158.
  • Gotoh Y. Measurement of neutron life in a D2O-system by neutron fluctuation. J Nucl Sci Technol. 1964;1:193–196.
  • Edelmann M, Ehrhardt J, Väth W. Investigations of the two-detector covariance method for the measurement of coupled reactor kinetics parameters. Ann Nucl Energy. 1975;2:207–216.
  • Misawa T, Shiroya S, Kanda K. Measurement of prompt neutron decay constant and large subcriticality by the Feynman-α method. Nucl Sci Eng. 1990;104:53–65.
  • Por G, Szappanos G. Feynman-alpha measurement in a 100kW research reactor. Prog Nucl Energy. 1998;33:439–455.
  • Pázsit I, Yamane Y. Theory of neutron fluctuations in source-driven subcritical systems. Nucl Instruments Methods Phys. Res. Section A. 1998;403:431–441.
  • Pázsit I, Yamane Y. The variance-to-mean ratio in subcritical systems driven by a spallation source. Ann Nucl Energy. 1998;25:667–676.
  • Yamane Y, Pázsit I. Heuristic derivation of Rossi-alpha formula with delayed neutrons and correlated source. Ann Nucl Energy. 1998;25:1373–1382.
  • Pázsit I, Yamane Y. The backward theory of Feynman- and Rossi-alpha methods with multiple emission sources. Nucl Sci Eng. 1999;133:269–281.
  • Behringer K, Wydler P. On the problem of monitoring the neutron parameters of the fast energy amplifier. Ann Nucl Energy. 1999;26:1131–1157.
  • Degweker SB. Some variants of the Feynman alpha method in critical and accelerator driven subcritical systems. Ann Nucl Energy. 2000;27:1245–1257.
  • Kitamura Y, Yamauchi H, Yamane Y. Derivation of variance-to-mean formula for periodic and pulsed neutron source. Ann Nucl Energy. 2003;30:897–909.
  • Kitamura Y, Yamauchi H, Yamane Y, Misawa T, Ichihara C, Nakamura H. Experimental investigation of variance-to-mean formula for periodic and pulsed neutron source. Ann Nucl Energy. 2004;31:163–172.
  • Pázsit I, Kitamura Y, Wright J, Misawa T. Calculation of the pulsed Feynman-alpha formulae and their experimental verification. Ann Nucl Energy. 2005;32:986–1007.
  • Kitamura Y, Taguchi K, Misawa T, Pázsit I, Yamamoto A, Yamane Y, Ichihara C, Nakamura H, Oigawa H. Calculation of the stochastic pulsed Rossi-alpha formula and their experimental verification. Prog Nucl Energy. 2006;48:37–50.
  • Kitamura Y, Pázsit I, Wright J, Yamamoto A, Yamane Y. Calculation of the pulsed Feynman- and Rossi-alpha formulae with delayed neutrons. Ann Nucl Energy. 2005;32:671–692.
  • Kitamura Y, Misawa T, Yamamoto A, Yamane Y, Ichihara C, Nakamura H. Feynman-alpha experiment with stationary multiple emission sources. Ann Nucl Energy. 2006;48:569–577.
  • Kitamura Y, Taguchi K, Yamamoto A, Yamane Y, Misawa T, Ichihara C, Nakamura H, Oigawa H. Application of variance-to-mean technique to subcriticality monitoring for accelerator-driven subcritical reactor. Int J Nucl Energy Sci Tech. 2006;2:266–284.
  • Izawa K, Uchida Y, Ohkubo K, Totsuka M, Sono H, Tonoike K. Infinite multiplication factor of low-enriched UO2-concrete system. J Nucl Sci Technol. 2012;49:1043–1047.
  • Hashimoto K, Ohya K, Yamane Y. Experimental investigations of dead time effect on Feynman-α method. Ann Nucl Energy. 1996;23:1099–1104.
  • Kitamura Y, Matoba M, Misawa T, Unesaki H, Shiroya S. Reactor noise experiments by using acquisition system for time series data of pulse train. J Nucl Sci Technol. 1999;36:653–660.
  • Yamane Y, Ito D. Feynman-α formula with dead time effect for a symmetric coupled-core system. Ann Nucl Energy. 1996;23:981–987.
  • Hazama T. Practical correction of dead time effect in variance-to-mean ratio measurement. Ann Nucl Energy. 2003;30:615–631.
  • Wallerbos EJM, Hoogenboom JE. The forgotten effect of the finite measurement time on various noise analysis techniques. Ann Nucl Energy. 1998;25:733–746.
  • Wallerbos EJM, Hoogenboom JE. Experimental demonstration of the finite measurement time effect on the Feynman-α technique. Ann Nucl Energy. 1998;25:1247–1252.
  • Kitamura T, Misawa T, Unesaki H, Shiroya S. General formulae for the Feynman-α method with the bunching technique. Ann Nucl Energy. 2000;27:1199–1216.
  • Degweker SB. Effect of deadtime on the statistics of time correlated pulses – application to the passive neutron assay problem. Ann Nucl Energy. 1989;16:409–416.
  • Knoll GF. Radiation detection and measurement. 2nd ed. New York (NY): Wiley; 1979; p. 95–99.
  • de Hoffmann F. The science and engineering of nuclear power. Vol. II. Cambridge: Addison Wesley; 1949.
  • Srinivasan M, Sahni DC. A modified statistical technique for the measurement of α in fast and intermediate reactor assemblies. Nukleonik. 1967;9:155–157.
  • Srinivasan M. On the measurement of α by a simple dead time method. Nukleonik. 1967;10:224–225.
  • Pál L. On the theory of stochastic processes in nuclear reactors. Nuovo Cimento. 1958;Supplement to 7:25–42.
  • Bell GI. On the stochastic theory of neutron transport. Nucl Sci Eng. 1965;21:390–401.
  • Pázsit I. The backward theory of stochastic particle transport with multiple emission sources. Physica Scripta. 1999;59:344–351.
  • Furuhashi A, Izumi A. Third moment of the number of neutrons detected in short time intervals. J Nucl Sci Technol. 1968;5:48–59.
  • Furuhashi A. Analyzing neutron count trios into two- and three-forked components. J Nucl Sci Technol. 1969;6:156–158.
  • Diven BC, Martin HC, Taschek RF, Terrell J. Multiplicities of fission neutrons. Phys Rev. 1956;101:1012–1015.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.