21,356
Views
908
CrossRef citations to date
0
Altmetric
Technical Material

Features of Particle and Heavy Ion Transport code System (PHITS) version 3.02

, ORCID Icon, , , , , , , , , , & show all
Pages 684-690 | Received 02 Nov 2017, Accepted 13 Dec 2017, Published online: 05 Jan 2018

References

  • Sato T. Niita K, Matsuda N, et al. Particle and Heavy Ion Transport code System, PHITS, version 2.52. J Nucl Sci Technol. 2013;50:913–923.
  • Iwamoto Y, Sato T, Hashimoto S, et al. Benchmark study of the recent version of the PHITS code. J Nucl Sci Technol. 2017;54:617–635.
  • Furuta T, Ishikawa KL, Fukunishi N, et al. Implementation of OpenMP and MPI hybrid parallelization to Monte Carlo dose simulation for particle therapy. IFMBE Proc. 2012;39:2099–2102.
  • Kai T, Maekawa F, Kosako K, et al. DCHAIN-SP 2001: high energy particle induced radioactivity calculation code. Tokai, Japan: Japan Atomic Energy Research Institute; 2001. ( JAERI-Data/Code 2001-016). [ in Japanese]
  • X-5 Monte Carlo Team. MCNP - a general N-particle transport code, verion 5, volume I: overview and theory. Los Alamos, USA: Los Alamos National Laboratory; 2003. ( LA-UR-03-1987).
  • Theis C, Buchegger KH, Brugger M, et al. Interactive three-dimensional visualization and creation of geometries for Monte Carlo calculations. Nucl Instrum Meth A. 2006;562:827–829.
  • Furuta T, Sato T, Han MC, et al. Implementation of tetrahedral-mesh geometry in Monte Carlo radiation transport code PHITS. Phys Med Biol. 2017;62:4798–4810.
  • Wu YC, Song J, Zheng HQ, et al. CAD-based Monte Carlo program for integrated simulation of nuclear system SuperMC. Ann Nucl Energy. 2015;82:161–168.
  • Sato T, Niita K, Matsuda N, et al. Overview of particle and heavy ion transport code system PHITS. Ann Nucl Energy. 2015;82:110–115.
  • Sato T, Niita K, Iwamoto Y, et al. Recent improvements of particle and heavy ion transport code system: PHITS. EPJ Web Conf. 2017;153:06008.
  • Hirayama H, Namito Y, Bielajew AF, et al. The EGS5 code system. Menlo Park, USA and Tsukuba, Japan: SLAC National Accelerator Laboratory and High Energy Accelerator Research Organization; 2005. ( SLAC-R-730 and KEK Report 2005-8).
  • Nara Y, Otuka H, Ohnishi A, et al. Relativistic nuclear collisions at 10A GeV energies from p+Be to Au+Au with the hadronic cascade model. Phys Rev C. 2000;61:024901.
  • Niita K, Chiba S, Maruyama T, et al. Analysis of the (N,xN') reactions by quantum molecular-dynamics plus statistical decay model. Phys Rev C. 1995;52:2620–2635.
  • Ogawa T, Sato T, Hashimoto S, et al. Energy-dependent fragmentation cross sections of relativistic C-12. Phys Rev C. 2015;92: 024614.
  • Ogawa T, Hashimoto S, Sato T. Development of general nuclear resonance fluorescence model. J Nucl Sci Technol. 2016;53:1766–1773.
  • Noda S, Hashimoto S, Sato T, et al. Improvement of photonuclear reaction model below 140 MeV in the PHITS code. J Nucl Sci Technol. 2015;52:57–62.
  • Abe S, Sato T. Implementation of muon interaction models in PHITS. J Nucl Sci Technol. 2016;54:101–110.
  • Ogawa T, Sato T, Hashimoto S, et al. Development of a reaction ejectile sampling algorithm to recover kinematic correlations from inclusive cross-section data in Monte-Carlo particle transport simulations. Nucl Instrum Meth A. 2014;763:575–590.
  • Abe S, Sato T. Soft error rate analysis based on multiple sensitive volume model using PHITS. J Nucl Sci Technol. 2016;53:451–458.
  • Furihata S. Statistical analysis of light fragment production from medium energy proton-induced reactions. Nucl Instrum Meth B. 2000;171:251–258.
  • Ogawa T, Hashimoto S, Sato T, et al. Development of gamma de-excitation model for prediction of prompt gamma-rays and isomer production based on energy-dependent level structure treatment. Nucl Instrum Meth B. 2014;325:35–42.
  • Taya T, Kataoka J, Kishimoto A, et al. Optimization and verification of image reconstruction for a Compton camera towards application as an on-line monitor for particle therapy. J Instrum. 2017;12:P07015.
  • Shibata K, Iwamoto O, Nakagawa T, et al. JENDL-4.0: a new library for nuclear science and engineering. J Nucl Sci Technol. 2011;48:1–30.
  • Sihver L, Kohama A, Iida K, et al. Current status of the “Hybrid Kurotama model” for total reaction cross sections. Nucl Instrum Meth B. 2014;334:34–39.
  • Sato T, Kataoka R, Yasuda H, et al. Air shower simulation for WASAVIES: warning system for aviation exposure to solar energetic particles. Radiat Prot Dosim. 2014;161:274–278.
  • Minomo K, Washiyama K, Ogata K. Deuteron-nucleus total reaction cross sections up to 1 GeV. J Nucl Sci Technol. 2017;54:127–130.
  • Boudard A, Cugnon J, David JC, et al. New potentialities of the Liege intranuclear cascade model for reactions induced by nucleons and light charged particles. Phys Rev C. 2013;87:014606.
  • Hashimoto S, Iwamoto Y, Sato T, et al. New approach to description of (d,xn) spectra at energies below 50 MeV in Monte Carlo simulation by intra nuclear cascade code with Distorted Wave Born Approximation. Nucl Instrum Meth B. 2014;333:27–41.
  • Shiiba T, Kuga N, Kuroiwa Y, et al. Evaluation of the accuracy of mono-energetic electron and beta-emitting isotope dose-point kernels using particle and heavy ion transport code system: PHITS. Appl Radiat Isot. 2017;128:199–203.
  • Cullen DE, Hubbell JH, Kissel LD. EPDL97: the evaluated photon data library, '97 version. UCRL-50400, 6, Rev. 5. Livermore, USA: Lawrence Livermore National Laboratory; 1997.
  • Kai T, Yokoya A, Ukai M, et al. Thermal equilibrium and prehydration processes of electrons injected into liquid water calculated by dynamic Monte Carlo method. Radiat Phys Chem. 2015;115:1–5.
  • Nikjoo H, Emfietzoglou D, Liamsuwan T, et al. Radiation track, DNA damage and response-a review. Rep Prog Phys. 2016;79:116601.
  • Kai T, Yokoya A, Ukai M, et al. Cross sections, stopping powers, and energy loss rates for rotational and phonon excitation processes in liquid water by electron impact. Radiat Phys Chem. 2015;108:13–17.
  • Geissel H, Scheidenberger C, Malzacher P, et al. ATIMA. Darmstadt, Germany: GSI. Available from: http://web-docs.gsi.de/∼weick/atima/ accessed on Sep. 15, 2017.
  • Yang ZY, Tsai PE, Lee SC, et al. Inter-comparison of dose distributions calculated by FLUKA, GEANT4, MCNP, and PHITS for proton therapy. EPJ Web Conf. 2017;153:04011.
  • Butts JJ, Katz R. Theory of RBE for heavy ion bombardment of dry enzymes and viruses. Radiat Res. 1967;30:855–871.
  • PHITS website. Tokai, Japan: JAEA. Available from: http://phits.jaea.go.jp/ accessed on Sep. 15, 2017.
  • Ayachit U. The paraview guide: a parallel visualization application. Clifton Park, USA: Kitware; 2015.
  • International Commission on Radiological Protection. Adult reference computational phantoms, ICRP Publication 110. Ann. ICRP. 2009;39(2).
  • Sato T, Kase Y, Watanabe R, et al. Biological dose estimation for charged-particle therapy using an improved PHITS code coupled with a microdosimetric kinetic model. Radiat Res. 2009;171:107–117.
  • Endo A, Yamaguchi Y, Eckerman KF. Nuclear decay data for dosimetry calculations – revised data of ICRP publication 38. Tokai, Japan: Japan Atomic Energy Research Institute; 2005. ( JAERI 1347).
  • International Commission on Radiological Protection. Nuclear decay data for dosimetric calculations, ICRP publication 107. Ann. ICRP. 2008; 38(3).
  • Verbeke JM, Hagmann C, Wright D. Simulation of neutron and gamma ray emission from fission and photofission. Livermore, USA: Lawrence Livermore National Laboratory; 2014. ( UCRL-AR-228518).
  • Phase-space database for external beam radiotherapy. Vienna, Austria: IAEA. Available from: https://www-nds.iaea.org/phsp/ accessed on Sep. 15, 2017.
  • Endo A, Sato T. Analysis of linear energy transfers and quality factors of charged particles produced by spontaneous fission neutrons from Cf-252 and Pu-244 in the human body. Radiat Prot Dosim. 2013;154:142–147.
  • Schneider W, Bortfeld T, Schlegel W. Correlation between CT numbers and tissue parameters needed for Monte Carlo simulations of clinical dose distributions. Phys Med Biol. 2000;45:459–478.
  • Panchal A. Extensible radiation therapy research platform & viewer for DICOM & DICOM RT. dicompyler. Available from: http://www.dicompyler.com/ accessed on Sep. 15, 2017.
  • Yeom YS, Jeong JH, Han MC, et al. Tetrahedral-mesh-based computational human phantom for fast Monte Carlo dose calculations. Phys Med Biol. 2014;59:3173–3185.