293
Views
4
CrossRef citations to date
0
Altmetric
Article

A new approach to radioactive waste self-burial using high penetrating radiation

, &
Pages 971-978 | Received 15 Nov 2017, Accepted 01 Apr 2018, Published online: 25 Apr 2018

References

  • IAEA Safety Standards Series No. GSG-1. Classification of radioactive waste. General safety guide. Vienna: International Atomic Energy Agency; 2009.
  • Geologic Disposal of Radioactive Waste in Perspective. Nuclear energy agency. France: Organization for economic co-operation and development; 2000.
  • Donea J. Operation ‘Hot Mole’. Euro-Spectra. 1972;11:102–109.
  • Logan SE. Deep self-burial of radioactive wastes by rock-melting capsules. Nucl Technol. 1974;21(2):111–124.
  • Byalko AV. Nuclear waste disposal: Geophysical safety. Boca Raton, Florida: CRC Press; 1994.
  • Efankin VG, Kashcheev VA, Poluektov PP, et al. Laboratory modelling of self-disposal of radioactive wastes. At Energy. 1994;76(2):161–164.
  • Logan SE. Deeper geologic disposal: a new look at self-burial. In: Proceeding of the WM’99 Conference; 1999 Feb 28–Mar 4; Tucson, AZ.
  • Gibb FGF. High-temperature, very deep, geological disposal: a safer alternative for high-level radioactive waste ? Waste Manage. 1999;19(3):207–211.
  • Kosachevskiy LY, Sui LS. On the ‘self-burial’ of radioactive wastes. J Tech Phys. 1999;69:123–127.
  • Stevenson DJ. Mission to Earth's core – a modest proposal. Nature. 2003;423(6937):239–240.
  • Ojovan MI, Gibb FGF, Poluektov PP, et al. Probing of the interior layers of the Earth with self-sinking capsules. At Energy. 2005;99:556–562.
  • Ojovan M, Gibb FGF. Feasibility of very deep self-disposal for sealed radioactive sources. In: Proceeding of the WM’05 Conference; 2005 Feb 27–Mar 3; Tucson, AZ.
  • Ojovan MI, Gibb FGF. Chapter 7, Exploring the Earth's Crust and Mantle Using Self-Descending, Radiation-Heated, Probes and Acoustic Emission Monitoring. In: Lattefer PA, editor. Nuclear waste research: siting, technology and treatment. New York (NY): Nova Science Publishers; 2008. p. 207–220.
  • Spasova LM, Gibb FGF, Ojovan MI. Characterisation of partial melting and solidification of granite E93/7 by the acoustic emission technique. Mater Res Soc Symp Proc. 2008;1107:75–82.
  • Ojovan MI, Poluektov PP, Kashcheev VA. Super-deep HLW Self-disposal option. In: Proceeding of the WM’11 Conference; 2011 Feb 27–Mar 3; Phoenix, AZ.
  • Bertka C, Blackman DK, Ildefonse B, et al. Executive summary: ‘Mantle Frontier’ workshop. Sci Drill. 2011;11:51–55.
  • Spasova LM, Ojovan MI, Gibb FGF. Acoustic emission on melting/solidification of natural granite simulating very deep waste disposal. Nucl Eng and Des. 2012;248:329–339.
  • Ojovan MI, Poluektov PP, Kascheev VA. The self-disposal option. Nucl Eng Int. 2012;57(696):28–29.
  • Chen W, Hao J, Chen Z. A study of self-burial of a radioactive waste container by deep rock melting. Sci Technol Nucl Inst. 2013 [2017 Oct 02]. https://www.hindawi.com/journals/stni/2013/184757
  • ; Arutyunyan RV, IBRAE RAN, inventor, assignee. Device for submersion in melting geological rocks. Russian Federation patent RU 2535199 C1. 2014 Dec 10.
  • ; Arutyunyan RV, IBRAE RAN, inventor, assignee. Device for submersion in melting geological rocks. Russian Federation patent RU 2577517 C1. 2016 Mar 20.
  • ; Arutyunyan RV, Shvedov AM, IBRAE RAN, inventors, assignees. Radioisotope device for sinking in geological formations. Russian Federation patent RU 2601288 C1. 2016 Oct 27.
  • ICRP. Publication 107: Nuclear decay data for dosimetric calculations. Ann ICRP. 2008;38(3):120.
  • Zhitnik AK, Ivanov NV, Marshalkin VE. The TDMCC Monte Carlo capability for spatial kinetics calculations of reactor cores. Trans Am Nucl Soc. 2004;91:248–249.
  • Arutyunyan RV, Bolshov LA, Borovoy AA, et al. Ядерное топливо в объекте «Укрытие» чернобыльской АЭС [Nuclear fuel in the ‘Shelter’ facility of the Chernobyl nuclear power plant]. Moscow: Nauka; 2010. Russian.
  • Rohsenow WM, Hartnett JP, Cho YI, editors. Handbook of heat transfer. 3rd ed. New York (NY): McGraw-Hill Professional; 1998.
  • Bayuk EI, Tomashevskaya IS, Dobrynin VM. Физические свойства минералов и горных пород при высоких термодинамических параметрах [Physical properties of minerals and rocks at high thermodynamic parameters]. Moscow: Nedra; 1988. Russian.
  • Vosteen H, Schellschmidt R. Influence of temperature on thermal conductivity, thermal capacity thermal diffusivity for different types of rock. Phys Chem Earth. 2003;28:499–509.
  • Eppelbaum L, Kutasov I, Pilchin A. Applied geothermics. New York: Springer; 2014.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.