1,165
Views
31
CrossRef citations to date
0
Altmetric
Article

Thermal and mechanical properties of polycrystalline U3Si2 synthesized by spark plasma sintering

, , , &
Pages 1141-1150 | Received 22 Jan 2018, Accepted 18 May 2018, Published online: 01 Jun 2018

References

  • Brent JL, Onder EN, Prudil AA. Fundamentals of nuclear engineering. 1st ed. Chichester: John Wiley & Sons Ltd; 2017. p. 177–180.
  • Pickman DO. Design of fuel elements. Nucl Eng Des. 1972;21:303–317.
  • Lopes DA, Uygur S, Johnson K. Degradation of UN and UN–u3Si2 pellets in steam environment. J Nucl Sci Technol. 2017;54:405–413.
  • Bragg-Sitton S. Development of advanced accident-tolerant fuels for commercial LWRs. Nucl News. 2014;83–91.
  • Ortega LH, Blamer BJ, Evans JA, et al. Development of an accident-tolerant fuel composite from uranium mononitride (UN) and uranium disilicide (U3Si2) with increased uranium loading. J Nucl Mater. 2016;471:116–121.
  • Harp JM, Lessing PA, Hoggan RE. Uranium silicide pellet fabrication by powder metallurgy for accident tolerant fuel evaluation and irradiation. J Nucl Mater. 2015;466:728–738.
  • White JT, Nelson AT, Dunwoody JT, et al. Thermophysical properties of U3Si2 to 1773 K. J Nucl Mater. 2015;464:275–280.
  • Fink JK. Thermophysical properties of uranium dioxide. J Nucl Mater. 2000;279:1–18.
  • Bethune B. Structural transformations in U3Si. J Nucl Mater. 1969;31:197–202.
  • Hastings IJ, Stoute RL. Temperature-dependent swelling in irradiated U3Si fuel elements. J Nucl Mater. 1970;37:295–302.
  • Metroka RR. Fabrication of uranium mononitride compacts. Lewis Research Center NASA Cleveland; 1970, NASA TN D-5876.
  • Hofman GL. A short note on high density dispersion fuels. Internal Report Argonne National Laboratory. Lemont (IL): Argonne National Laboratory; 1996.
  • Loch LD, Engle GB, Snyder MJ, et al. Survey of refractory uranium compounds. Battelle Memorial Institute; August 1956, Tech. Rep. BMI-1124.
  • Taylor KM, McMurtry CH. Synthesis and fabrication of refractory uranium compounds. Carborundum Company; February 1961, Tech. Rep. ORO-400.
  • Taylor RE, Cape JA. Thermal properties of refractory materials. Atomics International; April 1961, Tech. Rep. AD-255894.
  • Knacke O, Kubaschewski O, Hesselmann K. Thermochemical properties of inorganic substances. Berlin Heilderberg: Springer; 1991. p. 1–2541.
  • Shimizu H. The properties and irradiation behavior of U3Si2. Atomics International; July 1965, Tech. Rep NAA-SR-10621.
  • Metzger KE, Knight TW, Roberts E, et al. Determination of mechanical behavior of U3Si2 nuclear fuel by microindentation method. Prog Nucl Energy. 2017;99:147–154.
  • National Metrology Institute of Japan. Certificate of analysis standard reference material NMIJ RM 1201-a-isotrophic graphite for thermal diffusivity measurement. Tokyo: AIST; 2010.
  • Lide DR. CRC handbook of chemistry and physics. 71 ed. Boston (MA): CRC Press. 2016;1990–1991.
  • PDXL. (No: 01-075-1941).
  • Remschnig K, Bihan TL, Noël H, et al. Structural chemistry and magnetic behavior of binary uranium silicides. J Solid State Chem. 1992;97:391–399.
  • James JD, Spittle JA, Brown SGR, et al. A review of measurement techniques for the thermal expansion coefficient of metals and alloys at elevated temperatures. Meas Sci Technol. 2000;12:3.
  • Lindemann FA. Uber die Berechnung mlekularere Eigenfrequenzen. Physik. Z. 1910;11:609–612.
  • Uitert LGV, O’Bryan HM, Lines BME. Thermal expansion-an empirical correlation. Mater Res Bull. 1977;122:61–268.
  • Yamanaka S, Yamada K, Tsuzuki T, et al. Mechanical and thermal properties of uranium intermetallic compounds. J Alloys Compd. 1998;271–273:549–556.
  • Katz JJ, Rabinowitch E. The chemistry of uranium. 1st ed. New York: McGraw-Hill Book Company, Inc.; 1951. p. 137.
  • Hayes SL, Thomas JK, Peddicord KL. Material property correlations for uranium mononitride. J Nucl Mater. 1990;171:262–270.
  • Yamada K, Yamanaka S, Katsura M. Mechanical properties of (U,Ce)O2. J Alloys Compd. 1998;271–273:697–701.
  • Ugajin M, Itoh A. Experimental investigations on the chemical state of solid fission-product elements in U3Si2. J Alloys Compd. 1994;213:369–371.
  • Anderson OL. A simplified method for calculating the Debye temperature from elastic constants. J Phys Chem Solids. 1963;24:909–917.
  • Screiber E, Anderson O, Soga N. Elastic constants and their measurements. New York: McGrawHill; 1973.
  • Wang T, Qiu N, Wen X, et al. Du S First-principles investigations on the electronic structures of U3Si2. J Nucl Mater. 2016;469:194–199.
  • Fritz IJ. Elastic properties of UO2 at high pressure. J Appl Phys. 1976;47:4353–4358.
  • Whaley H, Fulkerson W, Potter R. Elastic moduli and Debye temperature of polycrystalline uranium nitride by ultrasonic velocity measurements. J Nucl Mater. 1969;31:345–350.
  • Watanabe T. Thermal transport properties of uranium dioxide by molecular dynamics simulations. J Nucl Mater. 2008;375:388–396.
  • White GK, Sheard FW. The thermal expansion at low temperatures of UO2 and UO2/ThO2. J Low Temp Phys. 1974;14:445–457.
  • Moore JP, Fulkerson W, McElroy DL. Thermal conductivity, electrical resistivity, and Seebeck coefficient of uranium mononitride. J Am Ceram Soc. 1970;53:76–82.
  • White JT, Nelson AT. Thermal conductivity of UO2+x and U4O9-y. J Nucl Mater. 2013;443:342–350.
  • Muta H, Kurosaki K, Uno M, et al. Thermal and mechanical properties of uranium nitride prepared by SPS technique. J Mater Sci. 2008;1043:6429–6434.
  • Jonson M, Mahan GD. Mott’s formula for the thermopower and the Wiedemann-Franz law. Phys Rev B. 1980;21:4223–4229.
  • Gong J, Wu J, Guan Z. Examination of the indentation size effect in low-load Vickers hardness testing of ceramics. J Eur Ceram Soc. 1999;19:2625–2631.
  • Anstis GR, Chantikul P, Lawn BR, et al. Critical evaluation of indentation techniques for measuring fracture toughness. J Am Ceram Soc. 1981;64:533–538.
  • Adachi J, Kurosaki K, Uno M, et al. Mechanical properties at sub-microscale and macroscale of polycrystalline uranium mononitride. J Nucl Mater. 2009;384:6–11.
  • Sengupta AK, Basak CB, Jarvis T, et al. Effect of titania addition on hot hardness of UO2. J Nucl Mater. 2004;325:141–147.
  • Ravichandran KS. Fracture resistance of structural alloys. In: ASM handbook: fatigue and fracture, vol. 19. Materials Park (OH): ASM International; 1996. p. 381–392.
  • Campbell FC. Fatigue and fracture: understanding the basics. Materials Park (OH): ASM International. US; 2012.
  • Yamashita T, Nitani N, Tsuji T, et al. Thermal expansions of NpO2 and some other actinide dioxides. J Nucl Mater. 1997;245:72–78.
  • Yamada K, Yamanaka S, Nakagawa T, et al. Study of the thermodynamic properties of (U, Ce)O2. J Nucl Mater. 1997;247:289–292.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.