568
Views
3
CrossRef citations to date
0
Altmetric
Article

Estimation of uncertainty in lead spallation particle multiplicity and its propagation to a neutron energy spectrum

ORCID Icon &
Pages 276-290 | Received 12 Jul 2019, Accepted 17 Sep 2019, Published online: 10 Oct 2019

References

  • Tsujimoto K, Sasa T, Nishihara K, et al. Neutronics design for lead-bismuth cooled accelerator-driven system for transmutation of minor actinide. J Nucl Sci Technol. 2004;41(1):21–36.
  • Nishihara K, Iwanaga K, Tsujimoto K, et al. Neutronics design of accelerator-driven system for power flattening and beam current reduction. J Nucl Sci Technol. 2008;45:8,812–822.
  • Van Den Eynde G, Malambu E, Stankovskiy A, et al. An updated core design for the multi-purpose irradiation facility MYRRHA. J Nucl Sci Technol. 2015;52:1053–1057.
  • Futakawa M, Maekawa F, Sakamoto S. 1-MW pulsed spallation neutron source (JSNS) at J-PARC. Neutron News. 2011;20:1,15–19.
  • Thomason JWG. The ISIS spallation neutron and muon source—the first thirty-three years. Nucl Instrum Methods in Phys Res A. 2019;917:61–67.
  • Mason TE, Abernathy D, Andersona I, et al. The spallation neutron source in Oak Ridge: a powerful tool for materials research. Phys B Condens Matter. 2006;385–386:955–960.
  • Blau B, Clausen KN, Gvasaliya S, et al. The Swiss Spallation Neutron Source SINQ at Paul Scherrer Institut. Neutron News. 2009;20(3):5–8.
  • Chen H, Wang XL. China’s first pulsed neutron source. Nat Mater. 2016;15:689–691.
  • Aguilar A, Sordo F, Mora T, et al. Design specification for the European Spallation Source neutron generating target element. Nucl Instrum Methods in Phys Res A. 2017;856:99–108.
  • Kawano T, Hanson M, Frankle P, et al. Evaluation and propagation of the 239Pu fission cross-section uncertainties using a Monte Carlo technique. Nucl Sci Eng. 2006;153:1–7.
  • Koning AJ, Rochman D. Towards sustainable nuclear energy: putting nuclear physics to work. Ann Nucl Energy. 2008;35:2024–2030.
  • Herman M, Trkov A, editors. ENDF-6 Format Manual. United States: Brookhaven National Laboratory; 2010. CSEWG Document ENDF-102, Report BNL-90365-2009.
  • Brown DA, Chadwick MB, Capote R, et al. ENDF/B-VIII.9: the 8th major release of the nuclear reaction data library with CIELO-project cross sections, new standards and thermal scattering data. Nucl Data Sheets. 2018;148:1–142.
  • Shibata K, Iwamoto O, Nakagawa T, et al. JENDL-4.0: a New Library for Nuclear Science and Engineering. J Nucl Sci Technol. 2011;48:1,1–30.
  • Cabellos O, Alvarez-Velarde F, Angelone M, et al. Benchmarking and validation activities within JEFF project. EPJ Web Conf. 2017;146:06004.
  • Iwamoto H, Nishihara K, Sugawara T, et al. Sensitivity and uncertainty analysis for an accelerator driven system with JENDL-4.0. J Nucl Sci Technol. 2013;50(8):856–862.
  • Iwamoto H, Nishihara K, Sugawara T, et al. Sensitivity and uncertainty analysis for a minor actinide transmuter with JENDL-4.0. Nucl Data Sheets. 2014;118:519–522.
  • Romojaro P, Alvarez-Velarde F, Kodeli I, et al. Nuclear data sensitivity and uncertainty analysis of effective neutron multiplication factor in various MYRRHA core configurations. Ann Nucl Energy. 2017;101:330–338.
  • Iwamoto H, Stankovskiy A, Fiorito L, et al. Monte Carlo uncertainty quantification of the effective delayed neutron fraction. J Nucl Sci Technol. 2018;55:5,539–547.
  • Iwamoto H, Stankovskiy A, Fiorito L, et al. Sensitivity and uncertainty analysis of βeff for MYRRHA using a Monte Carlo technique. EPJ Nucl Sci Technol. 2018;4:42.
  • Iwamoto H, Maier M, Nishihara K. Sensitivity and uncertainty analysis of burnup reactivity for an accelerator-driven system. Proc. Int. Conf. on the Physics of Reactors (PHYSOR2014); 2014 Sep 28–Oct 3; Kyoto (Japan): American Nuclear Sciety. [CD-ROM].
  • Fiorito L, Buss O, Hoefer A, et al. Decay heat uncertainty quantification of MYRRHA. EPJ Web Conf. 2017;146:09021.
  • Fiorito L, Stankovskiy A, Hernandez-Solis, et al. Nuclear data uncertainty analysis for the Po-210 production in MYRRHA. EPJ Nuclear Sci Technol. 2018;4:48.
  • Stankovskiy A, Iwamoto H, Çelik Y, et al. High-energy nuclear data uncertainties propagated to MYRRHA safety parameters. Ann Nucl Energy. 2018;120:207–218.
  • Bertini HW. Low-energy intranuclear cascade calculation. Phys Rev. 1963;131:1801.
  • Mashnik SG, Sierk AJ. CEM03.03 user manual. United States: Los Alamos National Laboratory; 2012. Technical report LA-UR-12-01364.
  • Boudard A, Cugnon J, David JC, et al. New potentialities of the Liège intranuclear cascade model for reactions induced by nucleons and light charged particles. Phys Rev C. 2013;87:014606.
  • Kunieda S, Iwamoto O, Iwamoto N, et al. Overview of JENDL-4.0/HE and benchmark calculations. Japan: Japan Atomic Energy Agency; 2016. p. 41–46. (JAEA-Conf 2016-004).
  • Koning AJ, Rochman D. Modern nuclear data evaluation with the TALYS code system. Nucl Data Sheets. 2012;113(12):2841–2934.
  • Watanabe Y, Kosako K, Kunieda S, et al. Status of JENDL high energy file. J Korean Phys Soc. 2011;59(2):1040–1045.
  • Sato T, Iwamoto Y, Hashimoto S, et al. Features of Particle and Heavy Ion Transport code System (PHITS) version 3.02. J Nucl Sci Technol. 2018;55:684–690.
  • Furihata S, Niita K, Meigo S-I, et al. The GEM code – a simulation program for the evaporation and the fission process of an excited nucleus –. Japan: Japan Atomic Energy Research Institute; 1999. (JAERI-Data Code 2001-015).
  • Niita K, Takada H, Meigo S-I IY. High-energy particle transport code NMTC/JAM. Nucl Instrum Methods Phys Res B. 2000;184:406–420.
  • Iwamoto H, Nishihara K, Iwamoto Y, et al. Impact of PHITS spallation models on the neutronic design of an accelerator driven system. J Nucl Sci Technol. 2016;53:10,1585–1594.
  • Otuka N, Dupond E, Semkova V, et al. Towards a more complete and accurate experimental nuclear reaction data library (EXFOR): international collaboration between nuclear reaction data centres (NRDC). Nucl Data Sheets. 2014;120(6):272–276.
  • Satoh D, Iwamoto Y, Ogawa T. Measurement of neutron-production double-differential cross sections of natC, 27Al, natFe, and natPb by 20, 34, 48, 63, and 78 MeV protons in the most-forward direction. Nucl Instrum Methods Phys Res A. 2019;920:22–36.
  • Amian WB, Byrd RC, Goulding CA, et al. Differential neutron production cross sections for 800 MeV protons. Nucl Sci Eng. 1992;112(1):78–86.
  • Nakamoto T, Ishibashi K, Matsufuji N, et al. Spallation neutron measurement by the time-of-flight method with a short flight path. J Nucl Sci Technol. 1995;32(9):827–833.
  • Ishibashi K, Takada H, Nakamoto T, et al. Measurement of neutron-production double-differential cross sections for nuclear spallation reaction induced by 0.8, 1.5 and 3.0 GeV protons. J Nucl Sci Technol. 1997;34(6):529–537.
  • Ledoux X, Borne F, Boudard A, et al. Spallation neutron production by 0.8, 1.2, 1.6 GeV protons on Pb targets. Phys Rev Lett. 1999;82(22):4413–4415.
  • Satoh D, Shigyo N, Ishibashi K, et al. Neutron-production double-differential cross sections of iron and lead by 0.8 and 1.5 GeV protons in the most-forward direction. J Nucl Sci Technol. 2002;40(5):283–290.
  • Trebukhovsky YuV, Titarenko YuE, Batyaev VF, et al. Double-differential cross sections for the production of neutrons from Pb, W, Zr, Cu, and Al targets irradiated with 0.8-, 1.0-, and 1.6-GeV protons. Phys At Nuclei. 2005;68(1):3–15.
  • Guertin A, Marie N, Auduc S, et al. Neutron and light-charged-particle productions in proton-induced reactions on 208Pb at 62.9 MeV. Eur Phys J A. 2005;23:49–60.
  • Meier MM, Clark DA, Goulding CA, et al. Differential neutron production cross sections and neutron yields from stopping-length targets for 113-MeV protons. Nucl Sci Eng. 1989;102(3):310–321.
  • Meier MM, Amian WB, Goulding CA, et al. Differential neutron production cross sections for 256-MeV protons. Nucl Sci Eng. 1992;110(3):289–298.
  • Amian WB, Byrd RC, Clark DA, et al. Differential neutron production cross sections for 597 MeV protons. Nucl Sci Eng. 1993;115(1):1–12.
  • Cugnon J, Henrotte P. The low-energy limit of validity of the intranuclear cascade model. Eur Phys J A. 2003;16:393–407.
  • Bishop CM. Pattern recognition and machine learning. New York: Springer; 2010.
  • Dempster AP, Laird NM, Rubin DB. Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc Series B Stat Methodol. 1977;39:1,1–38.
  • Efron B, Tibshirani R. Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Statist Sci. 1986;1(1):54–77.
  • Serber R. Nuclear reactions at high energies. Phys Rev. 1947;72:1114–1115.
  • Iwamoto H, Imamura M, Koba Y, et al. Proton-production double-differential cross sections for 300-MeV and 392-MeV proton-induced reactions. Phys Rev C. 2010;82:034604.
  • Beck SM, Powell CA. Proton and deuteron double differential cross sections at angles from 10 degree to 60 degree from Be, C, Al, Fe, Cu, Ge, W and Pb under 558-MeV proton irradiation. United States: NASA Langley Research Center; 1976. (NASA-TN-D-8119).
  • Iwamoto O. Development of a comprehensive code for nuclear data evaluation, CCONE, and validation using neutron-induced cross sections for uranium isotopes. J Nucl Sci Technol. 2007;44(5):687–697.
  • Meigo S-I, Takada H, Chiba S, et al. Measurements of neutron spectra produced from a thick lead target bombarded with 0.5 and 1.5 GeV protons. Nucl Instrum Methods Phys Res A. 1999;431:521–530.
  • PHITS user’s manual [Internet]. Tokai: Japan Atomic Energy Agency; [ cited 2019 Sep 1]. Available from: https://phits.jaea.go.jp/manual/manualE-phits.pdf
  • Iwamoto H, Meigo S-I. Validation of PHITS spallation models from the perspective of the shielding design of transmutation experimental facility. EPJ Web of Conference. 2017;153:01016.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.