739
Views
9
CrossRef citations to date
0
Altmetric
Article

Boron chemistry during transportation in the high temperature region of a boiling water reactor under severe accident conditions

, , , , &
Pages 291-300 | Received 05 Jul 2019, Accepted 20 Sep 2019, Published online: 30 Sep 2019

References

  • Schwinges B, Journeau C, Haste T, et al. Ranking of severe accident research priorities. Prog Nucl Energy. 2010 January;52(1):11–18.
  • Klein-Heßling W, Sonnenkalb M, Jacquemain D, et al. Conclusions on severe accident research priorities. Ann Nucl Energy. 2014 Dec;74:4–11.
  • Suehiro K, Sugimoto J, Hidaka A, et al. Development of the source term PIRT based on findings during Fukuhsima Daiichi NPPs accident. Nucl Eng Des. 2015 May;286:163–174.
  • Kajimoto M, Muramatsu K, Watanabe N, et al. Development of THALES-2, a computer code for coupled thermal-hydraulics and fission product transport analyses for severe accident at LWRs and its application to analysis of fission product revaporization phenomena. Proc. Int. Topical Mtg. on Safety of Thermal Reactors; 1991 Jul 21-25; Portland (US).
  • Ujita H, Satoh N, Naitoh M, et al. Development of severe accident analysis code SAMPSON in IMPACT project. J Nucl Sci Technol. 1999 Nov;36:1076–1088.
  • Gauntt RO, Cole RK, Erickson CM, et al. MELCOR computer code manuals: primer and user’s guide version 1.8.5. US: Sandia National Laboratories; 2005. (Report no. NUREG/CR-6119).
  • Miwa S, Yamashita S, Ishimi A, et al. Research program for the evaluation of fission product and actinide release behaviour, focusing on their chemical forms. Ener Proc. 2015 May;71:168–181.
  • Osaka M, Nakajima K, Miwa S, et al. Results and progress of fundamental research on FP chemistry. Proc. ERMSAR-2017; 2017 May 16-18; Warsaw (Poland).
  • Miyahara N, Miwa S, Nakajima K, et al. Development of experimental and analytical technologies for fission product chemistry under LWR severe accident condition. Proc. WRFPM-2017; 2017 Sep 10-14; Jeju Island (Korea).
  • Miyahara N, Miwa S, Horiguchi N, et al. Chemical reaction kinetics dataset of Cs-I-B-Mo-O-H system for evaluation of fission product chemistry under LWR severe accident conditions. J Nucl Sci Technol. 2019;56(2)228–240.
  • Miwa S, Miyahara N, Nakajima K, et al. Development of fission product chemistry database ECUME for the LWR severe accident, Proc. 27th International Conference on Nuclear Engineering (ICONE27), ICONE27-1993, 2019 May 20-23; Tsukuba, (Japan).
  • McFarlane J, Wren JC, Lemire RJ. Chemical speciation of iodine source term to containment. Nucl Technol. 2002 May;138:162–178.
  • Miwa S, Yamashita S, Osaka M. Prediction of the effects of boron release kinetics on the vapor species of cesium and iodine fission products. Prog Nucl Energy. 2016 March;92:254–259.
  • Gauntt RO, Humphries LL. Final Results of the XR2-1 BWR metallic melt relocation experiment. NUREG/CR-6527. Washington DC, USA: Nuclear Regulatory Commission; 1997.
  • Hofmann P, Markiewicz ME, Spino JL. Reaction behavior of B4C absorber material with stainless steel and zircaloy in severe light water reactor accidents. Nucl Technol. 1989;90(2):226–244.
  • Barrachin M, de Luze O, Haste T, et al. Late phase fuel degradation in the Phébus FP tests. Ann Nucl Energy. 2013 May;61:36–53.
  • Haste T, Payot F, Dominguez C, et al. Study of boron behaviour in the primary circuit of water reactors under severe accident conditions: A comparison of Phebus FPT3 results with other recent integral and separate-effects data. Nucl Eng Des. 2011 August;246:147–156.
  • Shibata H, Tokushima K, Sakamoto K, et al. Control blade degradation test under temperature gradient in steam atmosphere, Proc. Top Fuel 2016; 2016 Sep 11-15; Boise (US).
  • Gauntt RO, Cash JE, Cole RK, et al. MELCOR computer code manuals. NUREG/CR-6119, 2005. Rev.3. SAND2005-5713. Vol. 1 & 2. Albuqucrque, New Mexico, USA: Sandia National Laboratories; 2005.
  • Krauss W, Schanz G, Steiner H Tg-rig Tests (Thermal Balance) on the Oxidation of B4C, 2003, Forschungszentrum Karlsruhe GmbH, Karlsruhe, Germany. FZKA 6883.
  • Imoto J, Miwa S, Osaka M Experimental investigation on boron oxidative vaporization processes from zirconium-boron and iron-boron alloys in a high temperature steam atmosphere, Proceedings of International Topical Workshop on Fukushima Decommissioning Research (FDR2019), FDR2019-1062, 2019 May 24-26; Fukushima, (Japan).
  • Haste T, Payot F, Bottomley PDW. Transport and deposition in the Phebus FP circuit. Ann Nucl Energy. 2013 November;61:102–121.
  • Homann C, Hering W, Schanz G. Analysis and comparison of experimental data of bundle tests QUENCH-07 to QUENCH-09 about B4C control rod behaviour, 2006, Forschungszentrum Karlsruhe GmbH, Karlsruhe, Germany. FZKA 7101.
  • Minato K. Thermodyanmic analysis of cesium and iodine behavior in severe light water reactor accidents. J Nucl Mater. 1991;185:154–158.
  • Kalilainen J, Kärkelä T, Zilliacus R, et al. Chemical reactions of fission product deposits and iodine transport in primary circuit conditions. Nucl Eng Des. 2014 February;267:140–147.
  • Sundman B, Jansson B, Andersson J-O. The Thermo-Calc databank system. CALPHAD. 1985;9(2):153–190.
  • Dinsdale AT. SGTE data for pure elements. CALPHAD. 1991;15:317–425.
  • Schweitzer GK, Pesterfield LL. The Aqueous Chemistry of the Elements. New York: Oxford University Press; 2010.
  • Olsen C, Jensen S, Carlson E, et al. Materials interaction and temperatures in the Three Mile Island Unit 2 Core. Nucl Technol. 1989;87:57–94.
  • Cheng X, Jiang Z, Wei D, et al. High temperature oxidation behaviour of ferritic stainless steel SUS 430 in humid air. Met Mater Int. 2015 March;21(2):251–259.
  • Allen GC, Bowsher BR, Dickinson S, et al. Surface studies of the interaction of cesium hydroxide vapor with 304 stainless steel. Oxid Met. 1987 August;28(1–2):33–59.
  • Di Lemma FG, Nakajima K, Yamashita S, et al. Surface analyses of cesium hydroxide chemisorbed onto type 304 stainless steel. Nucl Eng Des. 2016 August;305:411–420.
  • Di Lemma FG, Nakajima K, Yamashita S, et al. Experimental investigation of the influence of Mo contained in stainless steel on Cs chemisorption behavior. J Nucl Mater. 2017 February;484:174–182.
  • Di Lemma FG, Yamashita S, Miwa S, et al. Prediction of chemical effects of Mo and B on the Cs chemisorption onto stainless steel. Energy Procedia. 2017;127:29–34.
  • Nishihara K, Iwamoto H, Suyama K, Estimation of fuel compositions in fukushima-daiichi nuclear power plant, JAEA-Data/Code 2012-018, 2012.
  • Sato I, Onishi T, Tanaka K, et al. Influence of boron vapor on transport behavior of deposited CsI during heating test simulating a BWR severe accident condition. J Nucl Mater. 2015 June;461:22–28.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.