200
Views
1
CrossRef citations to date
0
Altmetric
Article

Neutron Depth Profiling Study on 6Lithium and 10Boron Contents of Nuclear Graphite

ORCID Icon, , , , & ORCID Icon
Pages 1018-1024 | Received 08 Dec 2020, Accepted 09 Mar 2021, Published online: 25 Mar 2021

References

  • Wu Z, Lin D, Zhong D. The design features of the HTR-10. Nucl Eng Des. 2002;218(1–3):25–32.
  • Burchell TD. Nuclear graphite and radiation effects. In: Buschow KHJ, Cahn R, Flemings M, et al., editors. Encyclopedia of Materials Science & Technology. Amsterdam: Elsevier. 2001. p. 6310–6319.
  • Lee JJ, Ghosh TK, Loyalka SK. Oxidation rate of nuclear-grade graphite IG-110 in the kinetic regime for VHTR air ingress accident scenarios. J Nucl Mater. 2014;446(1–3):38.
  • Chuan X, Zhang X. Properties, types, production and application of nuclear graphite in nuclear reactors. Carbon Techniques. 2009;28:28–35.
  • Zhou Z, Bouwman WG, Schut H, et al. From nanopores to macropores: fractal morphology of graphite. Carbon. 2016;96:541–547.
  • Xu S. Some ideas about R & D of nuclear graphite. Carbon Techniques. 2010;29:55–60.
  • Zhou X, Tang Y, Lu Z, et al. Nuclear graphite for high temperature gas-cooled reactors. New Carbon Mater. 2017;32(3):193–204.
  • Brun CL. Molten salts and nuclear energy production. J Nucl Mater. 2007;360(1):1–5.
  • Hu Z, Li ZC, Chen DY, et al. CO2 corrosion of IG 110 nuclear graphite studied by gas chromatography. J Nucl Sci Technol. 2014;51(4):487 492. .
  • Yu XL, Yu SY. Analysis of fuel element matrix graphite corrosion in HTR PM for normal operating conditions. Nucl Eng Des. 2010;240(4):738–743.
  • Gainey BW A REVIEW OF TRITIUM BEHAVIOR IN HTGR SYSTEMS. GENERAL ATOMIC PROJECT 3224, 1976: GA–A 13461.
  • Steinwarz WD, Rohrig D, Nieder R Tritium behaviour in an HTR system based on AVR experience.//2nd International Working Group on Gas Cooled Reactors, 1981.
  • Atsumi H. Hydrogen retention in graphite and carbon materials under a fusion reactor environment. J Nucl Mater. 2003;313–316:543–547.
  • Atsumi H. Hydrogen bulk retention in grap hite and kinetics of diffusion. J Nucl Mater. 2002;307–311:1466–1470.
  • Le Guillou M, Toulhoat N, Pipon Y, et al. Thermal behavior of deuterium implanted into nuclear graphite studied by NRA. Nucl Instrum Meth Phys Res B. 2014;332:90–94.
  • Le Guillou M, Toulhoat N, Pipon Y, et al. Deuterium migration in nuclear graphite: consequences for the behavior of tritium in CO2 cooled reactors and for the decontamination of irradiated graphite waste. J Nucl Mater. 2015;461:72–77.
  • Brass AM, Chanfreau A. Accelerated diffusion of hydrogen along grain boundaries in nickel. Acta Mater. 1996;44(9):3823 3831.
  • Zhang Z, Wu Z, Wang D, et al. Current status and technical description of Chinese 2×250 MWth HTR-PM demonstration plant. Nucl Eng Des. 2009;239(7):1212–1219.
  • Thrower PA, Mayer RM. Point defects and self diffusion in graphite. Phys Stat Sol A. 1978;47(1):11–37.
  • Chi S, Kim G. Comparison of the oxidation rate and degree of graphitization of selected IG and NBG nuclear graphite grades. J Nucl Mater. 2008;381(1–2):9–14.
  • Liu J, Dong L, Chen W, et al. First principles study of oxidation behavior of irradiated graphite. Nucl Instrum Meth Phys Res B. 2015;160:166.
  • Jing S-P, Zhang C, Pu J, et al. 3D microstructures of nuclear graphite: IG-110, NBG-18 and NG-CT-10. Nucl Sci Tech. 2016;27(3):66.
  • Kane JJ, Matthews AC, Orme CJ, et al. Effective gaseous diffusion coefficients of select ultra fine, super fine and medium grain nuclear graphite. Carbon. 2018;136:369–379.
  • Zhu LK, Tu MH, Li ZC, et al. Temperature dependent multi scale pore evolution and nitrogen diffusion in nuclear graphite. Metall Mater Trans A. 2017;48(6):3008–3016. .
  • Lai H, Deng J, Liu Q, et al. Surface chemistry investigation of froth flotation products of lead-zinc sulfide ore using ToF-SIMS and multivariate analysis. Sep Purif Technol. 2021;254:117655.
  • Hitoshi Y, Shinji I, Shukuro I, et al. Determination of trace impurities in graphite and silicon carbide by total reflect ion X-ray fluorescence spectrometry after homogeneous liquid extraction. ISIJ Inter. 2000;40(8):779–782. .
  • Zhang H, Guo N, Zhang Y, et al. Measurement of helium in ICF pellet with external RBS system in Fudan University. Nucl Instrum Meth in Phys Res B. 2019;450:337–341.
  • Uwe S, Viliam K. Analy is of high purity graphite and silicon carbide by direct solid sampling electrothermal atomic absorption spectrometry. Fresenius J Anal Chem. 2001;371(6):859–866.
  • Yukihiro K, Akira N. Determinant ion of trace metal impurities in graphite powders by acid pressure decomposition and inductively coupled plasma atomic emission spectrometry. Analyst. 1993;118(7):827–830.
  • Becker JS, Pickhardt C, Dietze H-J. Laser ablation inductively coupled plasma mass spectrometry for the trace, ultratrace and isotope analysis of long-lived radionuclides in solid samples. Int J Mass Spectrom. 2000;202:283–297.
  • Mitsuyoshi W, Akira N. Determination of impurity elements in high purity graphite by inductively coupled plasma atomic emission spectrometry after microwave decomposition . Analyst. 2000;125(6):1189–1191.7.
  • Ziegler JF, Ziegler MD, Biersack JP. SRIM – the stopping and range of ions in matter (2010). Nucl Instrum Meth Phys Res B. 2010;268(11–12):1818–1823.
  • Lv S, Verhallen T, Vasileiadis A, et al. Operando neutron depth profiling on monitoring the lithium spatial distribution of lithium metal anodes. Nat Commun. 2018;9(1):2152.
  • Tun Z, Noël JJ, Bohdanowicz TH, et al. Cold-neutron depth profiling as a research tool for the study of surface oxides on metals special issue on neutron scattering in Canada. Can J Phys. 2010;88(10):751–758. .
  • Ziegler JF, Cole GW, Baglin JEE. Technique for determining concentration profiles of boron impurities in substrates. J Appl Phys. 1972;43(9):3809–3816.
  • Downing RG, Lamaze GP, Langland JK, et al. Neutron depth profiling: overview and description of NIST facilities. NIST J Res. 1993;98(1):98–109.
  • Yang Y, Jing X, Shan W. Analysis of effects of poison material in reflector graphite of HTR-10 on characteristics of equilibrium state of core . Nucl Power Eng. 1996;17(4):41–44.
  • Japan Atomic Energy Agency. 5-B-10 [EB/OL]. 2020[ November 25, 2020]. https://wwwndc.jaea.go.jp/cgi-bin/Tab80WWW.cgi?lib=J40&iso=B010.
  • Belkhiat S, Keraghel F. Lithium segregation on Al-3.49wt%-Li alloy oxidised surface. Rom J Phys. 2006;51(7/8):805–818.
  • Mandeltort L, Yates JT. Rapid atomic li surface diffusion and intercalation on graphite: a Surface Science Study. J Phys Chem C. 2012;116(47):24962–24967.
  • Liang F, Zhang Z, Sun L, et al. Process development and evaluation of nuclear carbon and boron-carbon materials for high temperature gas-cooled reactor. Carbon Techniques. 2020;39(4):46–49.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.