1,362
Views
4
CrossRef citations to date
0
Altmetric
Article

The dependence of pool scrubbing decontamination factor on particle number density: modeling based on bubble mass and energy balances

ORCID Icon, , ORCID Icon &
Pages 1048-1057 | Received 15 Oct 2020, Accepted 19 Mar 2021, Published online: 25 Apr 2021

References

  • Pich J, Schütz W. On the theory of particle deposition in rising gas bubbles: the absorption minimum. J Aerosol Sci. 1991;22:267–272.
  • Owczarski PC, Burk KW. SPARC-90: a code for calculating fission product capture in suppression pools, NUREG/CR-5765. USA: Nuclear Regulatory Commission; 1991.
  • Sun H, Sibamoto Y, Okagaki Y, et al. Experimental investigation of decontamination factor dependence on aerosol concentration in pool scrubbing. Sci Technol Nucl Install. 2019;1743982:1–15.
  • Hashimoto K, Soda K, Uno S, et al. Effect of pool scrubbing of insoluble aerosol in two phase flow in a pipe. Sev Accid Nucl Power Plant. 1988;2:77–86.
  • Xu Y, Deng J, Zou Z, et al. Experimental study on aerosol behavior in water pool scrubbing under severe accident conditions. Int J Adv Nucl React Des Technol. 2020;2:111–116.
  • Wang Q, Chen X, Guo Z, et al. An experiment investigation of particle collection efficiency in a fixed valve tray washing column. Powder Technol. 2014;256:52–60.
  • Lathem TL, Nenes A. Water vapor depletion in the DMT continuous-flow CCN chamber: effects on supersaturation and droplet growth. Aerosol Sci Technol. 2011;45:604–615.
  • Shen X, Saito Y, Mishima K, et al. Methodological improvement of an intrusive four-sensor probe for the multi-dimensional two-phase flow measurement. Int J Multiph Flow. 2005;31:593–617.
  • Shah YT, Kelkar BG, Godbole SP, et al. Design parameters estimations for bubble column reactors. AIChE J. 1982;28:353–379.
  • Clift R, Grace J, Weber M. Bubbles, Drops, and Particles. New York: Dover Publications; 1978.
  • Fuchs NA. The Mechanics of Aerosols. Oxford: Pergamon Press; 1964.
  • Powers DA. a simplified model of decontamination by bwr steam suppression pools, NUREG/CR-6153 SAND93-2588. USA: Nuclear Regulatory Commission; 1997.
  • Ghiaasiaan SM, Yao GF. A theoretical model for deposition of aerosols in rising spherical bubbles due to diffusion, convection, and inertia. Aerosol Sci Technol. 1997;26:141–153.
  • Mendelson HD. The prediction of bubble terminal velocities from wave theory. AIChE J. 1967;13:250–253.
  • Bird RB, Stewart WE, Lightfoot EN. Transport phenomena. New York: J. Wiley; 2007.
  • Colombet D, Legendre D, Cockx A, et al. Mass or heat transfer inside a spherical gas bubble at low to moderate Reynolds number. Int J Heat Mass Transf. 2013;67:1096–1105.
  • Juncu G. A numerical study of the unsteady heat/mass transfer inside a circulating sphere. Int J Heat Mass Transf. 2010;53:3006–3012.
  • Fukuta N, Walter LA. Kinetics of hydrometeor growth from a vapor spherical model. J Atmos Sci. 1970;27:1160–1172.
  • Hinds WC. Aerosol technology: properties, behavior, and measurement of airborne particles. New York: Wiley; 1999.
  • Elghobashi S. On predicting particle-laden turbulent flows. Appl Sci Res. 1994;52:309–329.
  • Crowe GT. Review-numerical models for dilute gas-particle flows. J Fluids Eng Trans ASME. 1982;104:297–303.
  • Bel Fdhila R, Duineveld PC. The effect of surfactant on the rise of a spherical bubble at high Reynolds and peclet numbers. Phys Fluids. 1996;8:310–321.
  • Pawliszak P, Ulaganathan V, Bradshaw-Hajek BH, et al. Mobile or immobile? Rise velocity of air bubbles in high-purity water. J Phys Chem C. 2019;123:15131–15138.
  • Takagi S, Uda T, Watanabe Y, et al. Behavior of a rising bubble in water with surfactant dissolution (1st report, steady behavior). Trans Japan Soc Mech Eng Ser B. 2003;69:2192–2199.
  • Hubmer GF, Titulaer UM. A kinetic model for droplet growth in the transition regime. J Stat Phys. 1991;63:203–219.
  • Souccar A, Oliver DL. Transfer from a droplet at high Peclet numbers with heat generation: interior problem. J Heat Transfer. 2007;129:664–668.
  • Ghiaasiaan SM, Yao GF. Diffusive and convective deposition of aerosols in rising spherical bubbles with internal circulation. Int J Multiph Flow. 1995;21:907–918.
  • Laker TS, Ghiaasiaan SM. Monte-carlo simulation of aerosol transport in rising spherical bubbles with internal circulation. J Aerosol Sci. 2004;35:473–488.
  • Akbar MK, Ghiaasiaan SM. Monte Carlo simulation of aerosol transport in rising gas bubbles undergoing shape deformation. J Aerosol Sci. 2006;37:735–749.