476
Views
10
CrossRef citations to date
0
Altmetric
Article

Energy dependent calculations of fission product, prompt, and delayed neutron yields for neutron induced fission on 235U, 238U, and 239Pu

ORCID Icon, ORCID Icon, ORCID Icon &
Pages 96-109 | Received 20 Feb 2021, Accepted 07 Jul 2021, Published online: 05 Sep 2021

References

  • Brady MC, England TR. Delayed neutron data and group parameters for 43 fissioning systems. Nucl Sci Eng. 1989;103(2):129–149.
  • Brady MC. Evaluation and application of delayed neutron precursor data. Los Alamos National Laboratory; 1989. LA-11534-T.
  • Yoshida T, Tachibana T, Storrer F, et al. Possible origin of the gamma-ray discrepancy in the summation calculations of fission product decay heat. J Nucl Sci Technol. 1999;36(2):135–142.
  • Okumura S, Kawano T, Jaffke P, et al. 235U(n,f) independent fission product yield and isomeric ratio calculated with the statistical Hauser-Feshbach theory. J Nucl Sci Technol. 2018;55(9):1009–1023.
  • Roberts RB, Hafstad LR, Meyer RC, et al. The delayed neutron emission which accompanies fission of Uranium and Thorium. Phys Rev. 1939 Apr;55(7):664.
  • Keepin GR, Wimett TF, Zeigler RK, et al. Delayed neutrons from fissionable isotopes of uranium, plutonium and thorium. J Nucl Energy. 1957;6(1):IN2– 21.
  • Masters CF, Thorpe MM, Smith DB, et al. The measurement of absolute delayed-neutron yields from 3.1- and 14.9-MeV fission. Nucl Sci Eng. 1969;36(2):202–208.
  • Krick MS, Evans AE. The measurement of total delayed-neutron yields as a function of the energy of the neutron inducing fission. Nucl Sci Eng. 1971;47(3):311–318.
  • Piksaikin VM, Kazakov LE, Roshchenko VA, et al. Experimental studies of the absolute total delayed neutron yields from neutron induced fission of 238U in the energy range 1–5 MeV. Prog Nucl Energy. 2002;41(1–4):135–144.
  • Evans AE, Thorpe MM, Krick MS, et al. Revised delayed-neutron yield data. Nucl Sci Eng. 1999;50(1):80–82.
  • Tuttle RJ. Delayed-neutron data for reactor-physics analysis. Nucl Sci Eng. 1975;56(1):37–71.
  • Yoshida T, Okajima S, Sakurai T, et al. Evaluation of delayed neutron data for JENDL-3.3. J Nucl Sci Technol. 2002;39(sup2):136–139.
  • Sikora DI. Dependence of total and reduced delayed neutron yields on the parameter (nZc-Ac). Neutron physics. Materials of the Sixth All-Union, Conference on Neutron Physics, Kiev, October, 2 – 6,. 1983 Oct 2 – 6;2:269–274. In Russian.
  • Lendel AI, Marinets TI, Sikora DI, et al. Determining delayed neutron yields by semiempirical formulas. Soviet Atomic Energy. 1986;61(3):752–754.
  • Waldo RW, Karam RA, Meyer RA, et al. Delayed neutron yields: time dependent measurements and a predictive model. Phys Rev C. 1981 Mar;23(3)1113–1127.
  • Shibata K, Iwamoto O, Nakagawa T, et al. JENDL-4.0: a new library for nuclear science and engineering. J Nucl Sci Technol. 2011 Jan;48(1)1–30.
  • Brown DA, Chadwick MB, Capote R, et al. ENDF/B-VIII.0: the 8th major release of the nuclear reaction data library with CIELO-project cross sections, new standards and thermal scattering data. Nucl Data Sheets. 2018;148:1–142.
  • Alexander DR, Krick S. Delayed neutron yield calculations for the neutron-induced fission of Uranium-235 as a function of the incident neutron energy. Nucl Sci Eng. 1971;62(4):627–635.
  • Ohsawa T, Miura T. Analysis of incident-energy dependence of delayed neutron yields for 235U. J Nucl Sci Technol. 2002;39(sup2):100–103.
  • Ohsawa T, Fukuda Y. An interpretation of energy dependence of the delayed neutron yields in the MeV-region. Proc Int Conf Nucl Data for Science Technology. 2007;91:339–342. Nice, France, from April 22 to April 27, 2007.
  • Brosa U, Grossmann S, Müller A. Nuclear scission. Phys Rep. 1990;197(4):167–262.
  • Hambsch FJ, Knitter HH, Budtz-Jørgensen C, et al. Fission mode fluctuations in the resonances of 235U(n,f). Nucl Phys A. 1989;491(1):56–90.
  • Minato F. Neutron energy dependence of delayed neutron yields and its assessments. J Nucl Sci Technol. 2018;55(9):1054–1064.
  • Katakura J. A systematics of fission product mass yields with 5 gaussian functions. Japan Atomic Energy Research Institute; 2003. JAERI-Research 2003-004.
  • Verriere M, Schunck N, Kawano T, et al. Number of particles in fission fragments. Phys Rev C. 2019 Aug;100(2)024612.
  • Lovell AE, Kawano T, Okumura S, et al. Extension of the hauser-feshbach fission fragment decay model to multi-chance fission. Phys Rev C. 2021 Jan;103(1)014615.
  • Meadows JW, Budtz-Jørgensen C. The fission fragment angular distributions and total kinetic energies for 235-U(n,f) from .18 to 8.83 MeV. Argonne National Laboratory; 1982. ANL/NDM-64.
  • Madland DG. Total prompt energy release in the neutron-induced fission of 235U, 238U, and 239Pu. Nucl Phys A. 2006;772(3–4):113–137.
  • Zöller CM. Investigation of neutron-induced fission of 238U in the energy range from 1 MeV to 500 MeV. 1995;Ph.D Thesis, Department of Physics, Technische Hochschule Darmstadt.
  • Duke D. Fision fragment mass distributions and total kinetic energy release of 235-Uranium and 238-Uranium in neutron-induced fission at intermediate and fast neutron energies. 2014;Ph.D Thesis, Colorado State University.
  • Duke DL. Fission Fragment Mass Distributions and Total Kinetic Energy Release of 235-Uranium and 238-Uranium in Neutron-Induced Fission at Intermediate and Fast Neutron Energies. Los Alamos National Laboratory; 2015. LA-UR-15-28829.
  • Wahl AC. Systematics of Fission-Product Yields. Los Alamos National Laboratory; 2002. LA-13928.
  • Wahl AC. Nuclear-charge distribution and delayed-neutron yields for thermal-neutron-induced fission of 235U, 233U, and 239Pu and for spontaneous fission of 252Cf. At Data Nucl Data Tables. 1988;39(1):1–156.
  • Talou P, Vogt R, Randrup J, et al. Correlated prompt fission data in transport simulations. European Physical Journal. 2018;54(1):9.
  • Ohsawa T, Horiguchi T, Hayashi H, et al. Multimodal analysis of prompt neutron spectra for 237Np(n,f). Nucl Phys A. 1999;653(1):17–26.
  • Ohsawa T, Horiguchi T, Mitsuhashi M, et al. Multimodal analysis of prompt neutron spectra for 238Pu(sf), 240Pu(sf), 242Pu(sf) and 239Pu(nth,f). Nucl Phys A. 2000;665(1–2):3–12.
  • Gilbert A, Cameron AGW. A composite nuclear-level density formula with shell corrections. Can J Phys. 1965;43(8):1446–1496.
  • Talou P, Kawano T, Bonneau L, et al. Prompt fission neutrons as probes to nuclear configurations at scission. AIP Conf Proc. 2008;1005(1):198–201.
  • Talou P. Advanced modeling of prompt fission neutrons. AIP Conf Proc. 2009;1175(1):261–268.
  • Litaize O, Serot O. Investigation of phenomenological models for the monte carlo simulation of the prompt fission neutron and emission. Phys Rev C. 2010 Nov; 82(5):054616.
  • Manailescu C, Tudora A, Hambsch FJ, et al. Possible reference method of total excitation energy partition between complementary fission fragments. Nucl Phys A. 2011;867(1):12–40.
  • Talou P, Becker B, Kawano T, et al. Advanced monte carlo modeling of prompt fission neutrons for thermal and fast neutron-induced fission reactions on 239Pu. Phys Rev C. 2011 Jun;83(6)064612.
  • Becker B, Talou P, Kawano T, et al. Monte Carlo Hauser-Feshbach predictions of prompt fission γ rays: Application to nth+235U, nth+239Pu, and 252Cf (sf). Phys Rev C. 2013 Jan;87(1)014617.
  • Müller R, Naqvi AA, Käppeler F, et al. Fragment velocities, energies, and masses from fast neutron induced fission of 235U. Phys Rev C. 1984 Mar;29(3)885–905.
  • Kawano T, Chadwick MB. Estimation of 239Pu independent and cumulative fissio product yields from the chain yield data using a bayesian technique. J Nucl Sci Technol. 2013;50(10):1034–1042.
  • Katakura J. A Systematics of fission product mass yields with 5 Gaussian functions. JAERI-Research 2003-004; 2003.
  • Kawano T, Shibata K. Covariance evaluation with the KALMAN system. ORNL/TM-2000/19. 2000;p. 121 – 129. Proc. of the Nuclear Data Covariance Workshop, 1999 Apr 22–23, New York, U.S.A: BNL, Upton. In L.C. Leal and R.W. Roussin (Eds).
  • Compilation and Evaluation of Fission Yield Nuclear Data. Vienna, Austria: International Atomic Energy Agency; 2001. p. 1168.
  • Kawano T, Okumura S, Lovell AE, et al. Influence of non-statistical properties in nuclear structure on emission of prompt fission neutrons. Phys Rev C. 2021;104:014611.
  • England TR, Rider BF. Evaluation and compilation of fission product yields. Los Alamos National Laboratory; 1994. ENDF-349, LA-UR-94-3106.
  • Goverdovskiy AA, Mitrofanov VF, Ketlerov VV, et al. Variations of fission fragment mass distributions in 238U(n,f) reaction around vibrational resonances. Proc. Int. Seminar ISINN-8. 2000;298.
  • Vivès F, Hambsch FJ, Bax H, et al. Investigation of the fission fragment properties of the reaction 238U(n,f) at incident neutron energies up to 5.8 MeV. Nucl Phys A. 2000;662(1–2):63–92.
  • Gooden ME, Arnold CW, Becker JA, et al. Energy dependence of fission product yields from 235U, 238U and 239Pu for incident neutron energies between 0.5 and 14.8 MeV. Nucl Data Sheets. 2016;131:319–356. Special Issue on Nuclear Reaction Data.
  • Chadwick MB, Kawano T, Barr DW, et al. Fission product yields from fission spectrum n+239Pu for ENDF/B-VII.1. Nucl Data Sheets. 2010;111(12):2923–2964.
  • Kawano T. CoH3: The coupled-channels and Hauser-Feshbach code. Springer Proceedings in Physics. 2021;254:28– 34. CNR2018: International Workshop on Compound Nucleus and Related Topics, Berkeley, CA, USA: LBNL, 2018 Sept 24 – 28. In Escher J, Alhassid Y, Bernstein LA, et al. (Eds.).
  • Otuka N, Dupont E, Semkova V, et al. Towards a more complete and accurate experimental nuclear reaction data library (EXFOR): international collaboration between nuclear reaction data centres (NRDC). Nucl Data Sheets. 2014;120:272–276.
  • Zerkin VV, Pritychenko B. The experimental nuclear reaction data (EXFOR): extended computer database and web retrieval system. Nucl Instrum Methods Phys Res A. 2018;888:31–43.
  • Baba H, Saito T, Takahashi N, et al. Role of effective distance in the fission mechanism study by the double-energy measurement for Uranium isotopes. J Nucl Sci Technol. 1997;34(9):871–881.
  • Hambsch FJ (personal communication).
  • Pleasonton F, Ferguson RL, Schmitt HW, et al. Prompt gamma rays emitted in the thermal-neutron-induced fission of 235U. Phys Rev C. 1972 Sep;6(3)1023–1039.
  • Simon G, Trochon J, Brisard F, et al. Pulse height defect in an ionization chamber investigated by cold fission measurements. Nucl Instrum Methods Phys Res A. 1990;286(1–2):220–229.
  • Straede C, Budtz-Jørgensen C, Knitter HH, et al. 235U(n,f) fragment mass-, kinetic energy- and angular distributions for incident neutron energies between thermal and 6 MeV. Nucl Phys A. 1987;462(1):85–108.
  • Zeynalov S, Furman W, Hambsch FJ, et al. Investigation of mass-TKE distributions of fission fragments from the U-235(n,f)- reaction in resonances. Proc. Int. Seminar ISINN-13. 2006.
  • D’yachenko PP, Kuzminov BD, Tarasko MZ, et al. Energy and mass distribution of fragments from fission of U-235 by monoenergetic neutrons from 0. to 15.5 MeV. Soviet Journal of Nuclear Physics. 1969; 8.
  • Akimov NI, Vorobyeva VG, Kabenin VN, et al. Effect of excitation energy on yields and kinetic energies of fragments at the fission of Pu-239 by neutrons. Yadernaya Fizika. 1971;13:484.
  • Surin VM, Sergachev AI, Kuzminov BD IRN, et al. Yields and kinetic energies of fragments in the fission of 233U and 239Pu by 5.5- and 15-MeV neutrons. Yadernaya Fizika. 1971;14:935.
  • Wagemans C, Allaert E, Deruytter A, et al. Comparison of the energy and mass characteristics of the 239Pu (nth, f) and the 240Pu (sf) fragments. Phys Rev C. 1984 Jul;30(1)218–223.
  • Schillebeeckx P, Wagemans C, Deruytter AJ, et al. Comparative study of the fragments’ mass and energy characteristics in the spontaneous fussion of 238Pu, 240Pu and 242Pu and in the thermal-neutron-induced fission of 239Pu. Nucl Phys A. 1992;545(3):623–645.
  • Nishio K, Nakagome Y, Kanno I, et al. Measurement of fragment mass dependent kinetic energy and neutron multiplicity for thermal neutron induced fission of Plutonium-239. J Nucl Sci Technol. 1995;32(5):404–414.
  • Tsuchiya C, Nakagome Y, Yamana H, et al. Simultaneous measurement of prompt neutrons and fission fragments for 239Pu(nth,f). J Nucl Sci Technol. 2000;37(11):941–948.
  • Duke DL, Tovesson F, Laptev AB, et al. Fission-fragment properties in U-238 (n, f) between 1 and 30 MeV. Phys Rev C. 2016 Nov;94(5)054604.
  • Vorobeva VG, Dyachenko NP, Kolosov NP, et al. Effect of nucleonic composition of fissioning nuclei on mean kinetic-energy of fragments. Yadernaya Fizika. 1974;19(5):954.
  • Meierbachtol K, Tovesson F, Duke DL, et al. Total kinetic energy release in 239Pu (n, f) post-neutron emission from 0.5 to 50 MeV incident neutron energy. Phys Rev C. 2016 Sep;94(3)034611.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.