273
Views
1
CrossRef citations to date
0
Altmetric
Article

Phase stability of Cs-Si-O and Cs-Si-Fe-O compounds on stainless steel

, &
Pages 345-356 | Received 22 Mar 2021, Accepted 18 Aug 2021, Published online: 13 Oct 2021

References

  • Kinoshita N, Sueki K, Sasa K, et al. Assessment of individual radionuclide distributions from the Fukushima nuclear accident covering central-east Japan. Proc Natl Acad Sci USA. 2011;108:19526–19529.
  • Yasunari TJ, Stohl A, Hayano RS, et al. Cesium-137 deposition and contamination of Japanese soils due to the Fukushima nuclear accident. Proc Natl Acad Sci USA. 2011;108(49):19530–19534.
  • Morino Y, Ohara T, Nishizawa M. Atmospheric behavior, deposition, and budget of radioactive materials from the Fukushima Daiichi nuclear power plant in March 2011. Geophys Res Lett. 2011;38(7):L00G11.
  • Martin-Fuertes F, Barbero R, Martin-Valdepenas J, et al. Analysis of source term aspects in the experiment Phebus FPT1 with the MELCOR and CFX codes. Nucl Eng Des. 2007;237(5):509–523.
  • Miwa S, Yamashita S, Ishimi A, et al. Research program for the evaluation of fission product and actinide release behaviour, focusing on their chemical forms. Energy Procedia. 2015;71:168–181.
  • International Atomic Energy Agency. Assessment and management of ageing of major nuclear power plant components important to safety: BWR pressure vessel internals. IAEA-TECDOC-1471. 2015.
  • Bowsher BR. Fission-product chemistry and aerosol behavior in the primary circuit of a pressurized water reactor under severe accident conditions. Prog Nucl Energy. 1987;20:199–233.
  • Elrick RM, Sallach RA, Oulette A, et al. Reaction between some cesium-iodine compounds and the reactors materials 304 stainless steel, inconel 600 and silver/Volume I cesium hydroxide reactions.Sandia National Laboratories; 1984. (Tech. Rep. NUREG/CR-3197 1984; 1 of 3 SAND83-0395)
  • Baston VF, Hofstetter KJ, Bain GM, et al. A comparison of TMI-2 and laboratory results for cesium activity retained on reactor material surfaces. American Nuclear Society Winter Meeting; 1985 Nov 10–14; San Fransisco (CA): Transaction American Nuclear Society. p. 223–225.
  • Allen GC, Bowsher BR, Dickinson S, et al. Surface studies of the interaction of cesium hydroxide vapor with 304 stainless steel. Oxid Met. 1987;28:33–59.
  • Beard AM, Benson CG, Bowsher BR, et al. Fission product and aerosol behaviour within the containment. Commission of the European Communities. (Finalreport. Tech. Rep. EUR 1990; 12844 EN).
  • Bowsher BR,Dickinson S,Nichols AL.High temperature studies of simulant fission products: part III, temperature-dependentinteraction of cesium hydroxide vapor with 304 stainless steelWinfrithNewburgh(Dorset):AEE Winfrith,Technology Division;1990 (AEEW-R 1863).
  • Nuclear Damage Compensation and Decommissioning Facilitation Corporation. Technical strategic plan 2018 for decommissioning of the Fukushima Daiichi nuclear power station of Tokyo Electric Power Company Holdings, Inc. [Internet].Japan; 2018 Oct 2. Available fromhttp://www.dd.ndf.go.jp/en/strategic-plan/book/20181109_SP2018eOV.pdf.
  • Di Lemma FG, Nakajima K, Yamashita S, et al. Surface analyses of cesium hydroxide chemisorbed onto type 304 stainless steel. Nucl Eng Des. 2016;305:411–420.
  • Di Lemma FG, Nakajima K, Yamashita S, et al. Experimental investigation of the influence of Mo contained in stainless steel on Cs chemisorption behavior. J Nucl Mater. 2017;484:174–182.
  • Kobata M, Okane T, Nakajima K, et al. Chemical form analysis of reaction product in Cs-adsorption on stainless steel by means of HAXPES and SEM/EDX. J Nucl Mater. 2018;498:387–394.
  • Nakajima K, Suzuki E, Miyahara N, et al. An experimental investigation for atmospheric effects on Cs chemisorption onto stainless steel. Prog Nucl Sci Technol. 2018;5:168–170.
  • Suzuki E, Nakajima K, Osaka M. Effect of atmosphere on the vaporization behavior of CsFeSiO4. Prog Nucl Sci Technol. 2018;5:165–167.
  • Di Lemma FG, Yamashita S, Miwa S, et al. Prediction of chemical effects of Mo and B on the Cs chemisorption onto stainless steel. Energy Procedia. 2017;127:29–34.
  • Nakajima K, Takai T, Furusawa T, et al. Thermodynamic study of gaseous CsBO2 by Knudsen effusion mass spectrometry. J Nucl Mater. 2017;491:183–189.
  • Nishioka S, Nakajima K, Suzuki E, et al. An experimental investigation of influencing chemical factors on Cs-chemisorption behavior onto stainless steel. J Nucl Sci Technol. 2019;56:988–995.
  • De Jong BHWS, Slaats PCC, Super HJT, et al. Extended structures crystalline phyllosilicates: silica ring systems in lithium, rubidium, cesium, and cesium/lithium phyllosilicate. J Non-crystal Solids. 1994;176:164–171.
  • Lapshin AE, Borisova NV, Ushakov VM, et al. Crystal structure and some thermodynamic characteristics of cesium silicate Cs6Si10O23. Russ J Inorg Chem. 2006;51:1696–1700.
  • Lapshin AE, Borisova NV, Ushakov VM, et al. Disordering in the structure of cesium silicate Cs6Si10O23. Glass Phys Chem. 2007;33:250–253.
  • Henry PF, Weller MT. CsFeSiO4: a maximum iron content zeotype. Chem Commun. 1998;24:2723–2724.
  • Bell AMT, Henderson CMB. Rietveld refinement of the structures of dry-synthesized MFeIIISi2O6 leucites (M = K, Rb, Cs) by synchrotron X-ray powder diffraction. Acta Crystallogr C. 1994;50:1531–1536.
  • Alekseeva ZDA. The Cs2O-SiO2 system. Russ J Inog Chem. 1966;11:626–629.
  • Smith RI, Howie RA, West AR, et al. The structure of metastable lithium disilicate, Li2Si2O5. Acta Crystallogr C. 1990;46:363–365.
  • Pant AK. A reconsideration of the crystal structure of β –Na2Si2O5. Acta Crystallogr B. 1968;24:1077–1083.
  • Gatehouse BM, Nesbit MC. The crystal structure of the 2:5 phase in the K2O-ZrO2 system: K4Zr5O12, a compound with octahedral and trigonal prismatic zirconium (IV) coordination. J Solid State Chem. 1980;31:53–58.
  • Greenberg BL, Loiacono GM. Structure of Li4Ge5O12 – a new compound in the Li2O-GeO2 system. Acta Crystallogr C. 1990;46:2021–2026.
  • Feist TP, Davies PK. The soft chemical synthesis of TiO2 (B) from layered titanates. J Solid State Chem. 1992;101:275–295.
  • Marsh RE. On the structure of Na2Ti4O9. J Solid State Chem. 1990;86:135.
  • Dem’yanets LN, Gorbunov YA, Maksimov BA, et al. Crystallization of scandium germinates in high-temperature aqueous solutions. Inorg Mater. 1976;12:126–127.
  • Blasse G. Crystallographic data of sodium lanthanide titanate (NaLnTiO4). J Inorg Nucl Chem. 1968;30:656–658.
  • Dudka AP, Kaminslii AA, Simonov VI. Refinement of NaGdGeO4, NaYGeO4, and NaLuGeO4 single-crystal structures. Phys Stat Sol (A). 1986;83:495–502.
  • Steele IM, Pluth JJ, Ito J. Crystal structure of synthetic LiScSiO4 olivine and comparison with isotypic Mg2SiO4. Z Kristallogr. 1978;147:119–127.
  • Lampert G, Bohme R. The crystal structure of KAlGeO4. Z Kristallogr. 1986;176:29–33.
  • Andou Y, Kawahara A. The refinement of the structure of synthetic kalsilite. Mineralog J. 1984;12:153–161.
  • Merinov BV, Maksimov BA, Dem’yanets LN, et al. Structure of synthetic alkali yttrium silicates. Sov Phys Crystallogr. 1983;28:92–94.
  • Nalbandyan VB, Belyaev IN, Mezhzhorina NV. Ion-exchange reactions of sodium ferrititanates and related compounds with salt melts. Russ J Inorg Chem. 1979;24:1784–1787.
  • Klaska KH, Jarchow O. Die Kristallstruktur von Rb2[Ga2Ge3O10], ein Rubidium-Gallium -germanat mit Natrolith-Gerust. Z Kristallogr. 1985;172:167–174.
  • Ohashi H, Osawa T, Tsukimura K. Refinement of the structure of manganese sodium dimetasilicate. Acta Cryst C. 1987;43:605–607.
  • Belous AG, Novitskaya GN, Polyanetskaya SV, et al. Study of complex oxides with the composition. Inorg Mater. 1987;23:412–415.
  • Helms A, Klemm WZ. Die Kristallstrukturen von Rubidium- und Cäsium-Oxyd, Anorg Allg Chem. 1939;242:33–40
  • Kihara K. An X-ray study of the temperature dependence of the quartz structure. Eur J Mineral. 1990;2:63–77.
  • Barinov VA, Bocelli G, Castanon SD, et al. Effects of mechanical grinding on magneto-structural properties of BaFe12O19 powders. J Magn Magn Mater. 1995;139:143–150.
  • Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77:3865–3868.
  • Blochl PE. Projector augmented-wave method. Phys Rev B. 1994;50:17953–17979.
  • Kresse G, Hafner J. Ab initio molecular dynamics for open-shell transition metals. Phys Rev B. 1993;48:13115–13118.
  • Kresse G, Hafner J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous -semiconductor transition in germanium. Phys Rev B. 1994;49:14251–14269.
  • Mosey NJ, Liao P, Carter EA. Rotationally invariant ab initio evaluation of Coulomb and exchange parameters for DFT +U calculations. J Chem Phys. 2008;128:014103.
  • Dudarev SL, Botton GA, Savrasov SY, et al. Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study. Phys Rev B. 1998;57:1505–1509.
  • Bandura AV, Kubick JD, Sofo JO. Periodic density functional theory study of water adsorption on the r-Quartz (101) surface. J Phys Chem C. 2011;115:5756–5766.
  • Izumi F, Momma K. Three-dimensional visualization in powder diffraction. Solid State Phenom. 2007;130:15–20.
  • Izumi F, Momma K. Invitation to new-generation systems RIETAN-FP-VESTA. Bull Ceram Soc Jpn. 2008;43:902–908.
  • Momma K, Izumi F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Crystallogr. 2011;44:1272–1276.
  • Minami T, Tokuda Y, Masai H, et al. Structural analysis of alkali cation in mixed alkali silicate glasses by 23Na and 133Cs MAS NMR. J Asian Ceram Soc. 2014;2:333–338.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.