1,437
Views
7
CrossRef citations to date
0
Altmetric
Invited Review A Decade from Fukushima Daiichi NPP Accident

A review of efforts for volume reduction of contaminated soil in the ten years after the accident at the Fukushima Daiichi Nuclear Power Plant

&
Pages 135-147 | Received 21 Apr 2021, Accepted 25 Aug 2021, Published online: 06 Oct 2021

References

  • Chino M, Nakayama H, Nagai H, et al. Preliminary estimation of release amounts of 131I and 137Cs accidentally discharged from the Fukushima Daiichi nuclear power plant into the atmosphere. J Nucl Sci Technol. 2011;48(7):1129–1134.
  • Hidaka A, Ishikawa J. Quantities of I-131 and Cs-137 in accumulated water in the basements of reactor buildings in process of core cooling at Fukushima Daiichi nuclear power plants accident and its influence on late phase source terms. J Nucl Sci Technol. 2014;51(4):413–424.
  • Hidaka A, Yokoyama H. Examination of 131I and 137Cs releases during late phase of Fukushima Daiichi NPP accident by using 131I/ 137Cs ratio of source terms evaluated reversely by WSPEEDI code with environmental monitoring data. J Nucl Sci Technol. 2017;54(8):819–829.
  • Radioactive waste disposal information site [Internet] Japanese. Ministry of the Environment, Government of Japan; 2013 May 29 [ cited 2021 Sep 20]. Available from: http://www.env.go.jp/jishin/rmp.html#act.
  • Radioactive waste disposal information site [Internet] Japanese. Ministry of the Environment, Government of Japan; 2013 May 29 [ cited 2021 Sep 20]. Available from: http://shiteihaiki.env.go.jp/radiological_contaminated_waste/designated_waste/.
  • Interim Storage Facility Information Site [Internet] Japanese. Ministry of the Environment, Government of Japan; 2015 Feb 3 [ cited 2021 Sep 20]. Available from: http://josen.env.go.jp/chukanchozou/facility/effort/.
  • Yasutaka T, Naito W. Assessing cost and effectiveness of radiation decontamination in Fukushima Prefecture, Japan. J Environ Radioact. 2016;151:512–520.
  • Yasutaka T, Naito W, Nakanishi J. Cost and effectiveness of decontamination strategies in radiation contaminated areas in fukushima in regard to external radiation dose. PLoS One. 2013;8(9):e75308.
  • State-Of-the-Art Report (SOAR) on Nuclear Aerosols (NARSOAR) [Internet]. Committee on the safety of nuclear installations NUA; 2009 Dec 17 [cited 2021 Sep 20]. Available from: https://www.oecd-nea.org/nsd/docs/2009/csni-r2009-5.pdf.
  • Morooka K, Kurihara E, Takehara M, et al. New highly radioactive particles derived from Fukushima Daiichi reactor unit 1: properties and environmental impacts. Sci Total Environ. 2021;773:145639.
  • Ochiai A, Imoto J, Suetake M, et al. Uranium dioxides and debris fragments released to the environment with cesium-rich microparticles from the Fukushima Daiichi nuclear power plant. Environ Sci Technol. 2018;52(5):2586–2594.
  • Imoto J, Ochiai A, Furuki G, et al. Isotopic signature and nano-texture of cesium-rich micro-particles: release of uranium and fission products from the Fukushima Daiichi nuclear power plant. Sci Rep. 2017;7(1):5409.
  • Suetake M, Nakano Y, Furuki G, et al. Dissolution of radioactive, cesium-rich microparticles released from the Fukushima Daiichi nuclear power plant in simulated lung fluid, pure-water, and seawater. Chemosphere. 2019;233:633–644.
  • Ikehara R, Suetake M, Komiya T, et al. Novel method of quantifying radioactive Cesium-Rich Microparticles (CsMPs) in the environment from the Fukushima Daiichi nuclear power plant. Environ Sci Technol. 2018;52(11):6390–6398.
  • Kurihara E, Takehara M, Suetake M, et al. Particulate plutonium released from the Fukushima Daiichi meltdowns. Sci Total Environ. 2020;743:140539.
  • Ikehara R, Morooka K, Suetake M, et al. Abundance and distribution of radioactive cesium-rich microparticles released from the Fukushima Daiichi nuclear power plant into the environment. Chemosphere. 2020;241:125019.
  • Utsunomiya S, Genki F, Ochiai A, et al. Caesium fallout in Tokyo on 15th March, 2011 is dominated by highly radioactive, caesium-rich microparticles. arXiv. 2019;1906:212.
  • Furuki G, Imoto J, Ochiai A, et al. Caesium-rich micro-particles: a window into the meltdown events at the Fukushima Daiichi nuclear power plant. Sci Rep. 2017;7(1):1–10.
  • Yoshida N, Kanda J. Tracking the Fukushima Radionuclides. Science. 2012;336(6085):1115.
  • Yamasaki S, Imoto J, Furuki G, et al. Radioactive Cs in the estuary sediments near Fukushima Daiichi nuclear power plant. Science of the Total Environment. 2016;551-552:155–162.
  • Kaneko M, Iwata H, Shiotsu H, et al. Radioactive Cs in the severely contaminated soils near the Fukushima Daiichi nuclear power plant. Front. Energy Res. 2015;3:1–10.
  • Tochi Bunrui Kihon Chousa [Internet] Japanese. National land information division NSPaRPB, MLIT of Japan. GIS; 1991 Mar [cited 2021 Apr 20]. Available from: https://nlftp.mlit.go.jp/kokjo/tochimizu/F3/data/pdf/0720t.pdf
  • Kamei A, Takagi T, Kubo K. Geology and petrography of the Abukuma granites in the Hiyama district, Fukushima Prefecture, NE Japan. Bull. Geolog. Surv. Jp. 2003;54(11–12):395–409.
  • Kogure T, Mukai H, Weathered Biotite: KR, et al. Material of radioactive contamination in Fukushima. In: Nakanishi TM, O`Brien M, Tanoi K, editors. Agricultural Implications of the Fukushima nuclear accident (III): after 7 Years. Singapore: Springer Singapore; 2019. p. 59–75.
  • Kikuchi R, Mukai H, Kuramata C, et al. Cs–sorption in weathered biotite from Fukushima granitic soil. J Mineral Petrol Sci. 2015;110(3):126–134.
  • Iwata H, Shiotsu H, Kaneko M, et al. Nuclear accidents in Fukushima, Japan, and exploration of effective decontaminant for the 137Cs-contaminated soils. In: revankar STeditor. 2012;142:20.Advances in Nuclear Fuel
  • Bailey SW. Structures of Layer Silicates. Crystal Structures of Clay Minerals and their X-Ray Identification. 5: Mineralogical Society of Great Britain and Ireland; 1980. p. 1–124.
  • Argüelles A, Leoni M, Blanco JA, et al. Semi-ordered crystalline structure of the Santa Olalla vermiculite inferred from X-ray powder diffraction. Am. Mineral. 2010;95(1):126–134.
  • Bostick BC, Vairavamurthy MA, Karthikeyan KG, et al. Cesium adsorption on clay minerals:  an EXAFS spectroscopic investigation. Environ Sci Technol. 2002;36(12):2670–2676.
  • Fan QH, Tanaka M, Tanaka K, et al. An EXAFS study on the effects of natural organic matter and the expandability of clay minerals on cesium adsorption and mobility. Geochim Cosmochim Acta. 2014;135:49–65.
  • Park S-M, Alessi DS, Baek K. Selective adsorption and irreversible fixation behavior of cesium onto 2:1 layered clay mineral: a mini review. J Hazard Mater. 2019;369:569–576.
  • McKinley JP, Zachara JM, Heald SM, et al. Microscale distribution of cesium sorbed to biotite and muscovite. Environ Sci Technol. 2004;38(4):1017–1023.
  • Zachara JM, Smith SC, Liu C, et al. Sorption of Cs+ to micaceous subsurface sediments from the Hanford site, USA. Geochim Cosmochim Acta. 2002;66(2):193–211.
  • Cremers A, Elsen A, De Preter P, et al. Quantitative analysis of radiocaesium retention in soils. Nature. 1988;335(6187):247–249.
  • Wauters J, Elsen A, Cremers A, et al. Prediction of solid/liquid distribution coefficients of radiocaesium in soils and sediments. Part one: a simplified procedure for the solid phase characterisation. Appl. Geochem. 1996;11(4):589–594.
  • Wauters J, Vidal M, Elsen A, et al. Prediction of solid/liquid distribution coefficients of radiocaesium in soils and sediments. Part two: a new procedure for solid phase speciation of radiocaesium. Appl. Geochem. 1996;11(4):595–599.
  • Murakami T, Utsunomiya S, Yokoyama T, et al. Biotite dissolution processes and mechanisms in the laboratory and in nature: early stage weathering environment and vermiculitization. Am. Mineral. 2003;88(2–3):377–386.
  • Kogure T, Morimoto K, Tamura K, et al. XRD and HRTEM evidence for fixation of cesium ions in vermiculite clay. Chem Lett. 2012;41(4):380–382.
  • Kato H, Onda Y, Teramage M. Depth distribution of 137Cs, 134Cs, and 131I in soil profile after Fukushima Dai-ichi nuclear power plant accident. J Environ Radioact. 2012;111:59–64.
  • Tanaka K, Takahashi Y, Sakaguchi A, et al. Vertical profiles of Iodine-131 and Cesium-137 in soils in Fukushima Prefecture related to the Fukushima Daiichi nuclear power station accident. Geochem. J. 2012;46(1):73–76.
  • Press release [ internet] Japanese. Ministry of education, culture, sports, science and technology, Japan; 2013 Mar 1. [cited 2021 Apr 20]. Available from: https://radioactivity.nsr.go.jp/ja/contents/7000/6749/24/191_258_0301_18.pdf.
  • Matsuda N, Mikami S, Shimoura S, et al. Depth profiles of radioactive cesium in soil using a scraper plate over a wide area surrounding the Fukushima Dai-ichi nuclear power plant, Japan. J Environ Radioact. 2015;139:427–434.
  • Saito K, Mikami S, Andoh M, et al. Summary of temporal changes in air dose rates and radionuclide deposition densities in the 80 km zone over five years after the Fukushima nuclear power plant accident. J Environ Radioact. 2019;210:105878.
  • Jiao F, Kinoshita N, Kawaguchi M, et al. Use of thermal treatment with CaCl2 and CaO to remove 137Cs in the soil collected from the area near the Fukushima Daiichi nuclear power plant. J Hazard Mater. 2021;401:123364.
  • Ito K, Miyahara H, Ujiie T, et al. Practical approach to decontamination of radioactive cesium-contaminated matter in agricultural region by improved wet classification and use of geomaterials. Trans. Atomic Energy Soc. Jpn. Japanese. 2012. 11: 255–271. (4).
  • Tanaka K, Watanabe N, Yamasaki S, et al. Mineralogical control of the size distribution of stable Cs and radiocesium in riverbed sediments. Geochem. J. 2018;52(2):1–13.
  • Tanaka K, Iwatani H, Sakaguchi A, et al. Size-dependent distribution of radiocesium in riverbed sediments and its relevance to the migration of radiocesium in river systems after the Fukushima Daiichi nuclear power plant accident. J Environ Radioact. 2015;139:390–397.
  • Tsukada H, Takeda A, Hisamatsu S, et al. Concentration and specific activity of fallout 137Cs in extracted and particle-size fractions of cultivated soils. J Environ Radioact. 2008;99(6):875–881.
  • Funakawa M, Tagawa A, Okuda N. Testing of multistep soil washing for radiocesium-contaminated soil containing plant matter. Trans. Atomic Energy Soc. Jpn. Japanese. 2012;11(4):272–280.
  • Akiyama Y, Nomura N, Mishima F, et al. Possibility of applying superconducting high-gradient magnetic separation to volume reduction of cesium-contaminated soil. TEION KOGAKU. Japanese. 2020. 55: 172–178. (3).
  • Nishijima S, Akiyama Y. Present situation of fukushima and possibility of decontamination technology by superconducting magnetic separation system. Electr. Eng. Jpn. 2017;199(2):17–22.
  • Kim I, Kim J-H, Kim S-M, et al. Enhanced selective separation of fine particles from Cs-contaminated soil using magnetic nanoparticles. J. Soil. Sediment. 2021;21(1):346–354.
  • Kim J-H, Kim S-M, Yoon I-H, et al. Selective separation of Cs-contaminated clay from soil using polyethylenimine-coated magnetic nanoparticles. Sci Total Environ. 2020;706:136020.
  • Murota K, Saito T, Tanaka S. Desorption kinetics of cesium from Fukushima soils. J Environ Radioact. 2016;153:134–140.
  • Yasutaka T, Kawamoto T, Komai T. Applicability of the acid extraction method to radioactive caesium contaminated soil. Radioisotopes. 2013;62(4):211–218. Japanese
  • Hou XL, Fogh CL, Kucera J, et al. Iodine-129 and Caesium-137 in Chernobyl contaminated soil and their chemical fractionation. Sci Total Environ. 2003;308(1–3):97–109.
  • Tessier A, Campbell PGC, Bisson M. Sequential extraction procedure for the speciation of particulate trace metals. Anal Chem. 1979;51(7):844–851.
  • Reinoso-Maset E, Brown J, Pettersen MN, et al. Linking heterogeneous distribution of radiocaesium in soils and pond sediments in the Fukushima Daiichi exclusion zone to mobility and potential bioavailability. J Environ Radioact. 2020;211:106080.
  • Sasaki T, Yamashita A, Terui N, et al. Evaluation of removal behavior of cesium in contaminated soil based on speciation analysis. Anal Sci. 2020;36(5):589–594.
  • Yin X, Zhang L, Meng C, et al. Selective removal of radiocesium from micaceous clay for post-accident soil decontamination by temperature-controlled Mg-leaching in a column. J Hazard Mater. 2020;387:121677.
  • Yin X, Horiuchi N, Utsunomiya S, et al. Effective and efficient desorption of Cs from hydrothermal-treated clay minerals for the decontamination of Fukushima radioactive soil. Chem Eng J. 2018;333:392–401.
  • Yin X, Zhang L, Harigai M, et al. Hydrothermal-treatment desorption of cesium from clay minerals: the roles of organic acids and implications for soil decontamination. Water Res. 2020;177:115804.
  • Fukuda T, Takahashi R, Hara T, et al. Mechanistic study on the removal of Cs from contaminated soil by rapid ion exchange in subcritical water. J Nucl Sci Technol. 2020;58(4):1–6.
  • Ishiyama S, Kamitani M, Kondo M, et al. Volume reduction effect of radioactive contaminated soil by high temperature heating process. Trans JSME. 2013;79(806):1504–1516. Japanese

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.