201
Views
0
CrossRef citations to date
0
Altmetric
Article

The behaviors of dislocation loops punched by helium interstitials accumulation under the temperature gradient field in tungsten

, , , &
Pages 1519-1526 | Received 14 Jan 2022, Accepted 15 Apr 2022, Published online: 30 May 2022

References

  • Rieth M, Boutard J, Dudarev SL, et al. Review on the EFDA programme on tungsten materials technology and science. J Nucl Mater. 2011;417:463–467.
  • Shu X, Tao P, Li X, et al. Helium diffusion in tungsten: a molecular dynamics study. Nucl Instrum Methods Phys Res A. 2013;303:84–86.
  • Becquart CS, Domain C. Migration energy of He in W revisited by ab initio calculations. Phys Rev Lett. 2006;97:196402.
  • Zhou H-B, Liu Y-L, Jin S, et al. Towards suppressing H blistering by investigating the physical origin of the H–He interaction in W. Nuclear Fusion. 2010;50:115010.
  • Bloom EE. The challenge of developing structural materials for fusion power systems. J Nucl Mater. 1998;258:7–17.
  • Kramer D, Brager H, Rhodes C, et al. Helium embrittlement in type 304 stainless steel. J Nucl Mater. 1968;25:121–131.
  • Ullmaier H. Helium in fusion materials: high temperature embrittlement. J Nucl Mater. 1985;133:100–104.
  • Ullmaier H, Trinkaus H. Helium in metals: effect on mechanical properties . Switzerland: Trans Tech Pulications Ltd; 1992. Vol. 97. pp. 451–472.
  • Liu Y-L, Yu Y, Dai Z-H. Statistical model and first-principles simulation on concentration of HenV cluster and He bubble formation in α-Fe and W. J Nucl Mater. 2015;456:162–173.
  • Liang-Fu Z, Jing Z, Wen-Hao H, et al. The nucleation and growth of helium hubbles at grain boundaries of bcc tungsten: a molecular dynamics simulation. Acta Phys Sinica. 2020;69:20191069.
  • Sandoval L, Perez D, Uberuaga BP, et al. Competing kinetics and He bubble morphology in W. Phys Rev Lett. 2015;114:105502.
  • He W, Gao X, Zhou L, et al. First-principles investigation of grain boundary structure effects on hydrogen solubility and segregation in tungsten. J Nucl Sci Technol. 2021;58:207–217.
  • He W, Zhou L, Gao X, et al. The influences of migration behaviors on annihilation of point defects trapped into grain boundaries in Tungsten. J Nucl Sci Technol. 2021;58:218–225.
  • Wang J, Niu -L-L, Shu X, et al. Energetics and kinetics unveiled on helium cluster growth in tungsten. Nuclear Fusion. 2015;55:092003.
  • Kobayashi R, Hattori T, Tamura T, et al. A molecular dynamics study on bubble growth in tungsten under helium irradiation. J Nucl Mater. 2015;463:1071–1074.
  • Xie H, Gao N, Xu K, et al. A new loop-punching mechanism for helium bubble growth in tungsten. Acta Materialia. 2017;141:10–17.
  • Fang J, Liu L, Gao N, et al. Molecular dynamics simulation of the diffusion of self-interstitial atoms and interstitial loops under temperature gradient field in tungsten. J Appl Phys. 2020;128:065103.
  • Ueda Y, Schmid K, Balden M, et al. Baseline high heat flux and plasma facing materials for fusion. Nuclear Fusion. 2017;57:092006.
  • Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J Comput Phys. 1995;117:1–19.
  • Ackland G, Thetford R. An improved N-body semi-empirical model for body-centred cubic transition metals. Philos Mag A. 1987;56:15–30.
  • Juslin N, Wirth B. Interatomic potentials for simulation of He bubble formation in W. J Nucl Mater. 2013;432:61–66.
  • Beck D. A new interatomic potential function for helium. Mol Phys. 1968;14:311–315.
  • Ziegler J, Biersack J, Littmark U. The stopping and range of ions in solids. Vol. 1. New York: Pergamon Press; 1985.
  • Derlet PM, Nguyen-Manh D, Dudarev S. Multiscale modeling of crowdion and vacancy defects in body-centered-cubic transition metals. Phys Rev B. 2007;76:054107.
  • Nguyen-Manh D, Horsfield A, Dudarev S. Self-interstitial atom defects in bcc transition metals: group-specific trends. Phys Rev B. 2006;73:020101.
  • Stukowski A. Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. Model Simul Mat Sci Eng. 2009;18:015012.
  • Gonze X, Ghosez P, Godby R. Density-functional theory of polar insulators. Phys Rev Lett. 1997;78:294.
  • Kresse G, Hafner J. Ab initio molecular dynamics for liquid metals. Phys Rev B. 1993;47:558.
  • Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci. 1996;6:15–50.
  • Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B. 1996;54:11169.
  • Hohenberg P, Kohn W. Density functional theory (DFT). Phys Rev. 1964;136:B864.
  • Gonze X, Lee C. Dynamical matrices, Born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory. Phys Rev B. 1997;55:10355.
  • Gonze X. First-principles responses of solids to atomic displacements and homogeneous electric fields: implementation of a conjugate-gradient algorithm. Phys Rev B. 1997;55:10337.
  • Baroni S, Giannozzi P, Testa A. Green’s-function approach to linear response in solids. Phys Rev Lett. 1987;58:1861.
  • Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B. 1999;59:1758.
  • Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77:3865.
  • W-H H, Gao X, Gao N, et al. Effects of grain boundary characteristics on its capability to trap point defects in tungsten. Chin Phys Lett. 2018;35:026101.
  • W-H H, Gao X, Wang D, et al. First-principles investigation of grain boundary morphology effects on helium solutions in tungsten. Comput Mater Sci. 2018;148:224–230.
  • Chaput L, Togo A, Tanaka I, et al. Phonon-phonon interactions in transition metals. Phys Rev B. 2011;84:094302.
  • McConnell J, Dove MT. Introduction to Lattice Dynamics Cambridge, (Cambridge University Press), 1993. xvii+ 258 pp., Price £35. 0 521 39293 4. Mineralogical Magazine. 1995;59:581–582.
  • Togo A, Chaput L, Tanaka I, et al. First-principles phonon calculations of thermal expansion in Ti 3 SiC 2, Ti 3 AlC 2, and Ti 3 GeC 2. Phys Rev B. 2010;81:174301.
  • Oostra W. An experimental approach to the phenomenon of thermophoresis . . Ph.D. Thesis, Delft University of Technology, The Netherlands .1998

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.