1,374
Views
2
CrossRef citations to date
0
Altmetric
Article

Raman identification and characterization of chemical components included in simulated nuclear fuel debris synthesized from uranium, stainless steel, and zirconium

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , & ORCID Icon show all
Pages 603-613 | Received 08 Jun 2022, Accepted 20 Sep 2022, Published online: 28 Oct 2022

References

  • Grambow B, Nitta A, Shibata A, et al. Ten years after the NPP accident at Fukushima: review on fuel debris behavior in contact with water. J Nucl Sci Technol. 2022;59(1):1–24.
  • Zheng J, Tagami K, Watanabe Y, et al. Isotopic evidence of plutonium release into the environment from the Fukushima DNPP accident. Sci Rep. 2012;2:304.
  • Ochiai A, Imoto J, Suetake M, et al. Uranium dioxides and debris fragments released to the environment with cesium-rich microparticles from the Fukushima Daiichi Nuclear Power Plant. Environ Sci Technol. 2018;52(5):2586–2594.
  • Martin PG, Louvel M, Cipiccia S, et al. Provenance of uranium particulate contained within Fukushima Daiichi Nuclear Power Plant Unit 1 ejecta material. Nat Commun. 2019;10:2801.
  • Kurihara E, Takehara M, Suetake M, et al. Particulate plutonium released from the Fukushima Daiichi meltdowns. Sci Total Environ. 2020;743:140539.
  • International Research Institute for Nuclear Decommissioning (IRID). Subsidy project of decommissioning and contaminated water management in the FY2017 Supplementary budgets, development of analysis and estimation technologies for fuel debris characterization, results for FY2019. Sep 2020. Available from: https://irid.or.jp/en/research/20190000-2/
  • Kirishima A, Hirano M, Sasaki T, et al. Leaching of actinide elements from simulated fuel debris into seawater. J Nucl Sci Technol. 2015;52(10):1240–1246.
  • Sasaki T, Takeno Y, Kirishima A, et al. Leaching test of gamma-emitting Cs, Ru, Zr, and U from neutron-irradiated UO2/ZrO2 solid solutions in non-filtered surface seawater. J Nucl Sci Technol. 2015;52(2):147–151.
  • Sasaki T, Takeno Y, Kobayashi T, et al. Leaching behavior of gamma-emitting fission products and Np from neutron-irradiated UO2–ZrO2 solid solutions in non-filtered surface seawater. J Nucl Sci Technol. 2016;53(3):303–311.
  • Kumagai Y, Takano M, Watanabe M. Reaction of hydrogen peroxide with uranium zirconium oxide solid solution — zirconium hinders oxidative uranium dissolution. J Nucl Mater. 2017;497:54–59.
  • Kirishima A, Hirano M, Akiyama D, et al. Study on the leaching behavior of actinides from nuclear fuel debris. J Nucl Mater. 2018;502:169–176.
  • Kirishima A, Nagatomo A, Akiyama D, et al. Study on the chemical structure and actinide leaching of MCCI debris. J Nucl Mater. 2019;527:151795.
  • Sasaki T, Sakamoto S, Akiyam D, et al. Leaching behavior of gamma-emitting fission products, calcium, and uranium from simulated MCCI debris in water. J Nucl Sci Technol. 2019;56(12):1092–1102.
  • Nakayoshi A, Jegou C, De Windt L, et al. Leaching behavior of prototypical corium samples: a step to understand the interactions between the fuel debris and water at the Fukushima Daiichi reactors. Nucl Eng Des. 2020;360:110522.
  • Onishi T, Maeda K, Katsuyama K. Leaching behavior of radionuclides from samples prepared from spent fuel rod comparable to core debris in the 1F NPS. J Nucl Sci Technol. 2021;58(4):383–398.
  • Kirishima A, Akiyam D, Kumagai Y, et al. Structure, stability, and actinide leaching of simulated nuclear fuel debris synthesized from UO2, Zr, and stainless-steel. J Nucl Mater. 2022;567:153842.
  • Kumagai Y, Kusaka R, Nakada M, et al. Uranium dissolution and uranyl peroxide formation by immersion of simulated fuel debris in aqueous H2O2 solution. J Nucl Sci Technol. 2022;59(8):961–971.
  • Bechta SV, Krushinov EV, Almjashev VI, et al. Phase diagram of the UO2–FeO1+x system. J Nucl Mater. 2007;362(1):46–52.
  • Almjashev VI, Barrachin M, Bechta SV, et al. Eutectic crystallization in the FeO1.5–UO2+x–ZrO2 system. J Nucl Mater. 2009;389(1):52–56.
  • Almjashev VI, Barrachin M, Bechta SV, et al. Phase equilibria in the FeO1+x–UO2–ZrO2 system in the FeO1+x-enriched domain. J Nucl Mater. 2010;400(2):119–126.
  • Okamoto Y, Takano M. Chemical state analysis of simulated corium debris by EXAFS. Prog Nucl Sci Technol. 2018;5:200–203.
  • Akiyama D, Akiyama H, Uehara A, et al. Phase analysis of uranium oxides after reaction with stainless steel components and ZrO2 at high temperature by XRD, XAFS, and SEM/EDX. J Nucl Mater. 2019;520:27–33.
  • Brissonneau L, Ikeuchi H, Piluso P, et al. Material characterization of the VULCANO corium concrete interaction test with concrete representative of Fukushima Daiichi Nuclear Plants. J Nucl Mater. 2020;528:151860.
  • Sumita T, Kitagaki T, Takano M, et al. Solidification and re-melting mechanisms of SUS-B4C eutectic mixture. J Nucl Mater. 2021;543:152527.
  • Allen GC, Butler IS, Anh Tuan N. Characterization of uranium oxides by micro-Raman spectroscopy. J Nucl Mater. 1987;144(1–2):17–19.
  • Manara D, Renker B. Raman spectra of stoichiometric and hyperstoichiometric uranium dioxide. J Nucl Mater. 2003;321(2–3):233–237.
  • Geisler T, Burakov BE, Zirlin V, et al. A Raman spectroscopic study of high-uranium zircon from the Chernobyl “lava.” Eur J Mineral. 2005;17(6):883–894.
  • Stefaniak EA, Alsecz A, Sajó IE, et al. Recognition of uranium oxides in soil particulate matter by means of μ-Raman spectrometry. J Nucl Mater. 2008;381(3):278–283.
  • He H, Shoesmith D. Raman spectroscopic studies of defect structures and phase transition in hyper-stoichiometric UO2+x. Phys Chem Chem Phys. 2010;12(28):8108–8117.
  • Jégou C, Caraballo R, Peuget S, et al. Raman spectroscopy characterization of actinide oxides (U1-yPuy)O2: resistance to oxidation by the laser beam and examination of defects. J Nucl Mater. 2010;405(3):235–243.
  • Pointurier F, Marie O. Identification of the chemical forms of uranium compounds in micrometer-size particles by means of micro-Raman spectrometry and scanning electron microscope. Spectrochim Acta B. 2010;65(9–10):797–804.
  • Desgranges L, Baldinozzi G, Simon P, et al. Raman spectrum of U4O9: a new interpretation of damage lines in UO2. J Raman Spectrosc. 2012;43(3):455–458.
  • Pointurier F, Marie O. Use of micro-Raman spectrometry coupled with scanning electron microscopy to determine the chemical form of uranium compounds in micrometer-size particles. J Raman Spectrosc. 2013;44(12):1753–1759.
  • Guimbretière G, Desgranges L, Jegou C, et al. Characterization of nuclear materials in extreme conditions: raman spectroscopy approach. IEEE Trans Nucl Sci. 2014;61(4):2045–2051.
  • Rao R, Bhagat RK, Salke NP, et al. Raman spectroscopic investigation of thorium dioxide–uranium dioxide (ThO2–UO2) fuel materials. Appl Spectrosc. 2014;68(1):44–48.
  • Dml H, Jones AE, Goulermas JY, et al. Raman spectroscopy of uranium compounds and the use of multivariate analysis for visualization and classification. Forensic Sci Int. 2015;251:61–68.
  • Lebreton F, Horlait D, Caraballo R, et al. Peculiar behavior of (U,Am)O2-δ compounds for high americium contents evidenced by XRD, XAS, and Raman spectroscopy. Inorg Chem. 2015;54(20):9749–9760.
  • Elorrieta JM, Bonales LJ, Rodríguez-Villagra N, et al. A detailed Raman and X-ray study of UO2+x oxides and related structure transitions. Phys Chem Chem Phys. 2016;18(40):28209–28216.
  • Colle JY, Naji M, Sierig M, et al. A novel technique for Raman analysis of highly radioactive samples using any standard micro-Raman spectrometer. J Vis Exp. 2017;122:e54889.
  • Lee J, Kim J, Youn YS, et al. Raman study on structure of U1-yGdyO2-x (y=0.005, 0.01, 0.03, 0.05 and 0.1) solid solutions. J Nucl Mater. 2017;486:216–221.
  • Lu G, Haes AJ, Forbes TZ. Detection and identification of solids, surfaces, and solutions of uranium using vibrational spectroscopy. Coord Chem Rev. 2018;374:314–344.
  • Shiryaev AA, Vlasova IE, Yapaskurt VO, et al. Forensic study of early stages of the Chernobyl accident: story of three hot particles. J Nucl Mater. 2018;511:83–90.
  • Epifano E, Naji M, Manara D, et al. Extreme multi-valence states in mixed actinide oxides. Commun Chem. 2019;2:59.
  • Miskowiec A, Niedziela JL, Spano TL, et al. Additional complexity in the Raman spectra of U3O8. J Nucl Mater. 2019;527:151790.
  • Rickert K, Prusnick TA, Kimani MM, et al. Assessing UO2 sample quality with μ-Raman spectroscopy. J Nucl Mater. 2019;514:1–11.
  • Medyk L, Manara D, Colle JY, et al. Determination of the plutonium content and O/M ratio of (U,Pu)O2-x using Raman spectroscopy. J Nucl Mater. 2020;541:152439.
  • Shiryaev AA, Burakov BE, Vlasova IE, et al. Study of mineral grains extracted from the Chernobyl “lava.” Mineral Petrol. 2020;114:489–499.
  • Spano TL, Niedziela JL, Shields AE, et al. Structural, spectroscopic, and kinetic insight into the heating rate dependence of studtite and metastudtite dehydration. J Phys Chem C. 2020;124(49):26699–26713.
  • Kusaka R, Kumagai Y, Yomogida T, et al. Distribution of studtite and metastudtite generated on the surface of U3O8: application of Raman imaging technique to uranium compound. J Nucl Sci Technol. 2021;58(6):629–634.
  • Lu KT, Zhang Y, Wei T, et al. An investigation of LnUO4 (Ln = Dy and Ho): structures, microstructures, uranium valences and magnetic properties. J Eur Ceram Soc. 2021;41(12):6000–6009.
  • Sarrasin L, Miro S, Jégou C, et al. Studtite formation assessed by Raman spectroscopy and 18O isotopic labeling during the oxidative dissolution of a MOX fuel. J Phys Chem C. 2021;125(35):19209–19218.
  • Akiyama D, Kusaka R, Kumagai Y, et al. Study on the relation between the crystal structure and thermal stability of FeUO4 and CrUO4. J Nucl Mater. 2022;568:153847.
  • Hosterman BD. Raman spectroscopic study of solid solution spinel oxides. UNLV Theses, Dissertations, Professional Papers, and Capstones. 2011; 1087.http://dx.doi.org/10.34917/2476131
  • D’Ipolito V, Andreozzi GB, Bersani D, et al. Raman fingerprint of chromate, aluminate and ferrite spinels. J Raman Spectrosc. 2015;46(12):1255–1264.
  • de Faria DLA, Silva SV, de Oliveira MT. Raman microspectroscopy of some iron oxides and oxyhydroxides. J Raman Spectrosc. 1997;28(11):873–878.
  • Bergerhoff G, Brown ID, Allen FH, et al., Crystallographic Databases, International Union of Crystallography, Chester; 1987.
  • Marshall TA, Morris K, Law GTW, et al. Uranium fate during crystallization of magnetite from ferrihydrite in conditions relevant to the disposal of radioactive waste. Mineral Mag. 2015;79(6):1265–1274.
  • Pidchenko I, Kvashnina KO, Yokosawa T, et al. Uranium redox transformations after U(VI) coprecipitation with magnetite nanoparticles. Environ Sci Technol. 2017;51(4):2217–2225.
  • Roberts HE, Morris K, Law GTW, et al. Uranium(V) incorporation mechanisms and stability in Fe(II)/Fe(III) (oxyhydr)oxides. Environ Sci Technol Lett. 2017;4(10):421–426.
  • Kerisit S, Felmy AR, Ilton ES. Atomistic simulations of uranium incorporation into iron (hydr)oxides. Environ Sci Technol. 2011;45(7):2770–2776.
  • Bender WM, Becker U. Quantum-mechanical investigation of the structures and energetics of uranium and plutonium incorporated into the magnetite (Fe3O4) lattice. ACS Earth Space Chem. 2019;3(4):637–651.
  • Wang Z, Chen Q, Shih K, et al. Uranium(IV) incorporation into inverse spinel magnetite (FeFe2O4): a charge-balanced substitution case analysis. PramanaJ Phys. 2019;93:9.
  • Kontoyannis CG, Orkoula M. Quantitative determination of the cubic, tetragonal and monoclinic phases in partially stabilized zirconias by Raman spectroscopy. J Mater Sci. 1994;29:5316–5320.
  • Kim BK, Hahn JW, Han KR. Quantitative phase analysis in tetragonal-rich tetragonal/monoclinic two phase zirconia by Raman spectroscopy. J Mater Sci Lett. 1997;16:669–671.
  • Kim BK, Hamaguchi H. Mode assignments of the Raman spectrum of monoclinic zirconia by isotopic exchange technique. Phys Stat Solidi B Res. 1997;203(2):557–563.
  • Quintard PE, Barbéris P, Mirgorodsky AP, et al. Comparative lattice-dynamical study of the Raman spectra of monoclinic and tetragonal phases of zirconia and hafnia. J Am Ceram Soc. 2002;85(7):1745–1749.
  • Kim DJ, Jung HJ, Yang IS. Raman spectroscopy of tetragonal zirconia solid solutions. J Am Ceram Soc. 1993;76(8):2106–2108.