667
Views
1
CrossRef citations to date
0
Altmetric
Review

DEM simulations in nuclear engineering: a review of recent progress

, &
Pages 285-306 | Received 20 Mar 2023, Accepted 28 Jun 2023, Published online: 13 Aug 2023

References

  • Gui N, Yang X, Tu J, et al. Effect of bed configuration on pebble flow uniformity and stagnation in the pebble bed reactor. Nucl Eng Des. 2014;270:295–301. doi:10.1016/j.nucengdes.2013.12.055
  • Wu M, Gui N, Wu H, et al. Numerical study of mixing pebble flow with different density in circulating packed bed. Ann Nucl Energy. 2019;130:483–492. doi:10.1016/j.anucene.2019.03.020
  • Gui N, Huang X, Yang X, et al. HTR-PM-based 3D pebble flow simulation on the effects of base angle, recirculation mode and coefficient of friction. Ann Nucl Energy. 2020;143. doi:10.1016/j.anucene.2020.107442.
  • Li Y, Gui N, Yang X, et al. Effect of a flow-corrective insert on the flow pattern in a pebble bed reactor. Nucl Eng Des. 2016;300:495–505. doi:10.1016/j.nucengdes.2016.02.002
  • Li Y, Gui N, Yang X, et al. Effect of friction on pebble flow pattern in pebble bed reactor. Ann Nucl Energy. 2016;94:32–43. doi:10.1016/j.anucene.2016.02.022
  • Jiang SY, Yang XT, Tang ZW, et al. Experimental and numerical validation of a two-region-designed pebble bed reactor with dynamic core. Nucl Eng Des. 2012;246:277–285. doi:10.1016/j.nucengdes.2012.02.005
  • Rycroft CH, Dehbi A, Lind T, et al. Granular flow in pebble-bed nuclear reactors: Scaling, dust generation, and stress. Nucl Eng Des. 2013;265:69–84. doi:10.1016/j.nucengdes.2013.07.010
  • Luo X, Wang X, Shi L, et al. Nuclear graphite wear properties and estimation of graphite dust production in HTR-10. Nucl Eng Des. 2017;315:35–41. doi:10.1016/j.nucengdes.2017.02.016
  • Tang YS, Yin ZZ, Zhang LG, et al. The application of the DEM-based burnup construction method in the pebble burnup history analysis in HTR-10. Nucl Eng Des. 2019;349:1–7. doi:10.1016/j.nucengdes.2019.04.013
  • Liu M, Liu R, Liu B, et al. Preparation of the Coated Nuclear Fuel Particle Using the Fluidized Bed-chemical Vapor Deposition (FB-CVD) Method. Procedia Eng. 2015;102:1890–1895. doi:10.1016/j.proeng.2015.01.328
  • Liu M, Liu R, Chen M, et al. Preliminary simulation study of particle coating process by FB-CVD method using a CFD-DEM-PBM model. Nucl Eng Des. 2018;329:53–59. doi:10.1016/j.nucengdes.2017.11.047
  • Liu M, Chen M, Li T, et al. CFD–DEM–CVD multi-physical field coupling model for simulating particle coating process in spout bed. Particuology. 2019;42:67–78. doi:10.1016/j.partic.2018.03.011
  • Duan G, Yamaji A, Sakai M. A multiphase MPS method coupling fluid–solid interaction/phase-change models with application to debris remelting in reactor lower plenum. Ann Nucl Energy. 2022;166:108697. doi: 10.1016/j.anucene.2021.108697
  • Li G, Wen P, Feng H, et al. Study on melt stratification and migration in debris bed using the moving particle semi-implicit method. Nucl Eng Des. 2020;360:110459. doi:10.1016/j.nucengdes.2019.110459
  • Chen R, Guo K, Zhang Y, et al. Numerical analysis of the granular flow and heat transfer in the ADS granular spallation target. Nucl Eng Des. 2018;330:59–71. doi:10.1016/j.nucengdes.2018.01.019
  • Ma L, Zhang X, Zhang S, et al. Validation of the idea of granular flow target: A beam coupling test. Nucl Eng Des. 2018;330:289–296. doi:10.1016/j.nucengdes.2017.12.023
  • Zhang Z, Wu Z, Sun Y, et al. Design aspects of the Chinese modular high-temperature gas-cooled reactor HTR-PM. Nucl Eng Des. 2006;236(5–6):485–490. doi: 10.1016/j.nucengdes.2005.11.024
  • Liu FR, Chen XW, Li Z, et al. DEM–CFD simulation of modular PB-FHR core with two-grid method. Nucl Sci Tech. 2017;28(7):28. doi: 10.1007/s41365-017-0246-3
  • Cundall PA, Strack ODL. A discrete numerical model for granular assemblies. Géotechnique. 1979;29(1):47–65. doi: 10.1680/geot.1979.29.1.47
  • Jordam Caserta A, Navarro HA, Cabezas-Gómez L. Damping coefficient and contact duration relations for continuous nonlinear spring-dashpot contact model in DEM. Powder Technol. 2016;302:462–479. doi: 10.1016/j.powtec.2016.07.032
  • Moukalled F, Mangani L, Darwish M. The Finite Volume Method in Computational Fluid Dynamics. Springer; 2016;103–135.
  • Koshizuka S, Oka Y. Moving-particle semi-implicit method for fragmentation of incompressible fluid. Nucl Sci Eng. 1996;123(3):421–434. doi: 10.13182/NSE96-A24205
  • Aidun CK, Clausen JR. Lattice-Boltzmann method for complex flows. Annu Rev Fluid Mech. 2010;42(1):439–472. doi: 10.1146/annurev-fluid-121108-145519
  • Peskin CS. Flow patterns around heart valves: A numerical method. J Comput Phys. 1972;10(2):252–271. doi: 10.1016/0021-9991(72)90065-4
  • Koshizuka S, Nobe A, Oka Y. Numerical analysis of breaking waves using the moving particle semi-implicit method. Int J Numer Methods Fluids. 1998;26(7):751–769. doi: 10.1002/(SICI)1097-0363(19980415)26:7<751:AID-FLD671>3.0.CO;2-C
  • Zhong W, Yu A, Liu X, et al. DEM/CFD-DEM modelling of non-spherical particulate systems: theoretical developments and applications. Powder Technol. 2016;302:108–152. doi:10.1016/j.powtec.2016.07.010
  • Wang T, Zhang F, Furtney J, et al. A review of methods, applications and limitations for incorporating fluid flow in the discrete element method. J Rock Mech Geotech Eng. 2022;14(3):1005–1024. doi: 10.1016/j.jrmge.2021.10.015
  • Coetzee CJ. Review: Calibration of the discrete element method. Powder Technol. 2017;310:104–142. doi: 10.1016/j.powtec.2017.01.015
  • Sakai M. How should the discrete element method be applied in industrial systems?: A review. KONA Powder Particle J. 2016;33:169–178. Hosokawa Powder Technology Foundation. doi: 10.14356/kona.2016023
  • Shi Q, Sakai M. Recent progress on the discrete element method simulations for powder transport systems: A review. Adv Powder Technol. 2022;33(8):103664. doi: 10.1016/j.apt.2022.103664
  • Golshan S, Sotudeh-Gharebagh R, Zarghami R, et al. Review and implementation of CFD-DEM applied to chemical process systems. Chem Eng Sci. 2020;221:115646. doi:10.1016/j.ces.2020.115646
  • Horabik J, Molenda M. Parameters and contact models for DEM simulations of agricultural granular materials: A review. Biosyst Eng. 2016;147:206–225. doi: 10.1016/j.biosystemseng.2016.02.017
  • Qiu X DEM simulations in mining and mineral processing. Proceedings of the 7th International Conference on Discrete Element Methods. Dalian, China; 2016. p. 37–43.
  • Di Maio FP, Di Renzo A. Analytical solution for the problem of frictional-elastic collisions of spherical particles using the linear model. Chem Eng Sci. 2004;59(16):3461–3475. doi: 10.1016/j.ces.2004.05.014
  • Di Renzo A, Di Maio FP. An improved integral non-linear model for the contact of particles in distinct element simulations. Chem Eng Sci. 2005;60(5):1303–1312. doi: 10.1016/j.ces.2004.10.004
  • Di Renzo A, Di Maio FP. Comparison of contact-force models for the simulation of collisions in DEM-based granular flow codes. Chem Eng Sci. 2004;59(3):525–541. doi: 10.1016/j.ces.2003.09.037
  • Hertz VHH. Ueber die Berührung fester elastischer Körper (On contact between elastic bodies). Crll. 1882;1882(92):156–171. doi: 10.1515/crll.1882.92.156
  • Mindlin RD. Compliance of elastic bodies in contact. J Appl Mech. 1949;16(3):259–268. doi: 10.1115/1.4009973
  • Mindlin RD, Deresiewicz H. Elastic spheres in contact under varying oblique forces. J Appl Mech. 1953;20(3):327–344. doi: 10.1115/1.4010702
  • Kruggel‐Emden H, Simsek E, Rickelt S, et al. Review and extension of normal force models for the discrete element method. Powder Technol. 2007;171(3):157–173. doi: 10.1016/j.powtec.2006.10.004
  • Kruggel-Emden H, Wirtz S, Scherer V. A study on tangential force laws applicable to the discrete element method (DEM) for materials with viscoelastic or plastic behavior. Chem Eng Sci. 2008;63(6):1523–1541. doi: 10.1016/j.ces.2007.11.025
  • Stevens AB, Hrenya CM. Comparison of soft-sphere models to measurements of collision properties during normal impacts. Powder Technol. 2005;154(2–3):99–109. doi: 10.1016/j.powtec.2005.04.033
  • Langston PAA, Tüzün U, Heyes DMM. Continuous potential discrete particle simulations of stress and velocity fields in hoppers: transition from fluid to granular flow. Chem Eng Sci. 1994;49(8):1259–1275. doi: 10.1016/0009-2509(94)85095-X
  • Langston PA, Tüzün U, Heyes DM. Discrete element simulation of granular flow in 2D and 3D hoppers: Dependence of discharge rate and wall stress on particle interactions. Chem Eng Sci. 1995;50(6):967–987. doi: 10.1016/0009-2509(94)00467-6
  • Kuwabara G, Kono K. Restitution coefficient in a collision between two spheres. Jpn J Appl Phys. 1987;26(8R):1219–1223. doi: 10.1143/JJAP.26.1230
  • Thornton C, Cummins SJ, Cleary PW. An investigation of the comparative behaviour of alternative contact force models during inelastic collisions. Powder Technol. 2013;233:30–46. doi: 10.1016/j.powtec.2012.08.012
  • Tsuji Y, Tanaka T, Ishida T. Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe. Powder Technol. 1992;71(3):239–250. doi: 10.1016/0032-5910(92)88030-L
  • Antypov D, Elliott JA. On an analytical solution for the damped Hertzian spring. EPL (Europhysics Letters). 2011;94(5):50004. doi: 10.1209/0295-5075/94/50004
  • Shamsuzzaman M, Horie T, Fuke F, et al. Experimental evaluation of debris bed characteristics in particulate debris sedimentation behaviour. Volume 6: beyond design basis events. Student Paper Competition. American Society of Mechanical Engineers; 2013.
  • Ma H, Zhou L, Liu Z, et al. A review of recent development for the CFD-DEM investigations of non-spherical particles. Powder Technol. 2022;412:117972. doi:10.1016/j.powtec.2022.117972
  • Lu G, Third JR, Müller CR. Discrete element models for non-spherical particle systems: from theoretical developments to applications. Chem Eng Sci. 2015;127:425–465. doi: 10.1016/j.ces.2014.11.050
  • WILLIAMS JR, PENTLAND AP. Superquadrics and modal dynamics for discrete elements in interactive design. Eng Comput (Swansea). 1992;9(2):115–127. doi: 10.1108/eb023852
  • Ning Z, Boerefijn R, Ghadiri M, et al. Distinct element simulation of impact breakage of lactose agglomerates. Adv Powder Technol. 1997;8(1):15–37. doi: 10.1016/S0921-8831(08)60477-X
  • Nassauer B, Liedke T, Kuna M. Polyhedral particles for the discrete element method. Granul Matter. 2013;15(1):85–93. doi: 10.1007/s10035-012-0381-9
  • Sakai M, Yamada Y, Shigeto Y, et al. Large-scale discrete element modeling in a fluidized bed. Int J Numer Methods Fluids. 2010;64(10–12):1319–1335. doi: 10.1002/fld.2364
  • Sakai M, Takahashi H, Pain CC, et al. Study on a large-scale discrete element model for fine particles in a fluidized bed. Adv Powder Technol. 2012;23(5):673–681. doi: 10.1016/j.apt.2011.08.006
  • Yokoi K. Numerical method for interaction between multiparticle and complex structures. Phys Rev E. 2005;72(4):046713. doi: 10.1103/PhysRevE.72.046713
  • Shigeto Y, Sakai M. Arbitrary-shaped wall boundary modeling based on signed distance functions for granular flow simulations. Chem Eng J. 2013;231:464–476. doi: 10.1016/j.cej.2013.07.073
  • Sakai M, Takabatake K, Tamura K, et al. Why do wet-particles adhere to a high-speed roll in a three-roll mill? Phys Fluids. 2019;31(3):31. doi: 10.1063/1.5085693
  • Sakai M, Shigeto Y, Basinskas G, et al. Discrete element simulation for the evaluation of solid mixing in an industrial blender. Chem Eng J. 2015;279:821–839. doi:10.1016/j.cej.2015.04.130
  • Basinskas G, Sakai M. Numerical study of the mixing efficiency of a ribbon mixer using the discrete element method. Powder Technol. 2016;287:380–394. doi: 10.1016/j.powtec.2015.10.017
  • Tsunazawa Y, Shigeto Y, Tokoro C, et al. Numerical simulation of industrial die filling using the discrete element method. Chem Eng Sci. 2015;138:791–809. doi:10.1016/j.ces.2015.09.014
  • Tsugeno Y, Sakai M, Yamazaki S, et al. DEM simulation for optimal design of powder mixing in a ribbon mixer. Adv Powder Technol. 2021;32(5):1735–1749. doi: 10.1016/j.apt.2021.03.026
  • Tsory T, Ben-Jacob N, Brosh T, et al. Thermal DEM–CFD modeling and simulation of heat transfer through packed bed. Powder Technol. 2013;244:52–60. doi:10.1016/j.powtec.2013.04.013
  • Wu H, Gui N, Yang X, et al. Numerical simulation of heat transfer in packed pebble beds: CFD-DEM coupled with particle thermal radiation. Int J Heat Mass Transf. 2017;110:393–405. doi:10.1016/j.ijheatmasstransfer.2017.03.035
  • Wu H, Gui N, Yang X, et al. Effect of scale on the modeling of radiation heat transfer in packed pebble beds. Int J Heat Mass Transf. 2016;101:562–569. doi:10.1016/j.ijheatmasstransfer.2016.05.090
  • Wu H, Gui N, Yang X, et al. An approximation function model for solving effective radiative heat transfer in packed bed. Ann Nucl Energy. 2020;135:107000. doi:10.1016/j.anucene.2019.107000
  • Wu H, Gui N, Yang X, et al. Analysis and evaluations of four models of thermal radiation for densely packed granular systems. Chem Eng Sci. 2020;211:115309. doi:10.1016/j.ces.2019.115309
  • Sotiropoulos F, Yang X. Immersed boundary methods for simulating fluid–structure interaction. Prog Aerosp Sci. 2014;65:1–21. doi: 10.1016/j.paerosci.2013.09.003
  • Liao C-C, Chang Y-W, Lin C-A, et al. Simulating flows with moving rigid boundary using immersed-boundary method. Comput Fluids. 2010;39(1):152–167. doi: 10.1016/j.compfluid.2009.07.011
  • Kim J, Kim D, Choi H. An immersed-boundary finite-volume method for simulations of flow in complex geometries. J Comput Phys. 2001;171(1):132–150. doi: 10.1006/jcph.2001.6778
  • Uhlmann M. An immersed boundary method with direct forcing for the simulation of particulate flows. J Comput Phys. 2005;209(2):448–476. doi: 10.1016/j.jcp.2005.03.017
  • Su S-W, Lai M-C, Lin C-A. An immersed boundary technique for simulating complex flows with rigid boundary. Comput Fluids. 2007;36(2):313–324. doi: 10.1016/j.compfluid.2005.09.004
  • d’Humières D, Ginzburg I, d’Humières D. Viscosity independent numerical errors for Lattice Boltzmann models: from recurrence equations to “magic” collision numbers. Comput Math Appl. 2009;58(5):823–840. doi: 10.1016/j.camwa.2009.02.008
  • Ginzburg I. Equilibrium-type and link-type lattice Boltzmann models for generic advection and anisotropic-dispersion equation. Adv Water Resour. 2005;28(11):1171–1195. doi: 10.1016/j.advwatres.2005.03.004
  • D’Humières D. Generalized Lattice-Boltzmann equations. rarefied gas dynamics: theory and simulations. Washington DC: American Institute of Aeronautics and Astronautics; 1994. p. 450–458.
  • Latt J, Chopard B. Lattice Boltzmann method with regularized pre-collision distribution functions. Math Comput Simul. 2006;72(2–6):165–168. doi: 10.1016/j.matcom.2006.05.017
  • Boghosian BM, Yepez J, Coveney PV, et al. Correction for Boghosian et al., entropic lattice Boltzmann methods. Proc R Soc London A: Math Phys EngSci. 2001;457(2016):3052–3052. doi: 10.1098/rspa.2001.2003
  • Krüger T, Kusumaatmaja H, Kuzmin A, et al. The Lattice Boltzmann method [Internet]. 1st. Springer Cham; 2017. 10.1007/978-3-319-44649-3.
  • He Y-L, Liu Q, Li Q, et al. Lattice Boltzmann methods for single-phase and solid-liquid phase-change heat transfer in porous media: A review. Int J Heat Mass Transf. 2019;129:160–197. doi:10.1016/j.ijheatmasstransfer.2018.08.135
  • Gingold RA, Monaghan JJ. Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon Not R Astron Soc. 1977;181(3):375–389. doi: 10.1093/mnras/181.3.375
  • Wang Z, Hu F, Duan G, et al. Numerical modeling of floating bodies transport for flooding analysis in nuclear reactor building. Nucl Eng Des. 2019;341:390–405. doi:10.1016/j.nucengdes.2018.11.031
  • Duan G, Chen B, Zhang X, et al. A multiphase MPS solver for modeling multi-fluid interaction with free surface and its application in oil spill. Comput Methods Appl Mech Eng. 2017;320:133–161. doi:10.1016/j.cma.2017.03.014
  • Xiao X, Cai Q, Chen R, et al. An improved MPS-DEM numerical model for fluid–solid coupling problem in nuclear reactor. Nucl Eng Des. 2022;396:111875. doi:10.1016/j.nucengdes.2022.111875
  • Tamai T, Koshizuka S. Least squares moving particle semi-implicit method. Comp Part Mech. 2014;1(3):277–305. doi: 10.1007/s40571-014-0027-2
  • Chen J-S, Pan C, Wu C-T, et al. Reproducing Kernel Particle methods for large deformation analysis of non-linear structures. Comput Methods Appl Mech Eng. 1996;139(1–4):195–227. doi: 10.1016/S0045-7825(96)01083-3
  • Duan G, Matsunaga T, Yamaji A, et al. Imposing accurate wall boundary conditions in corrective‐matrix‐based moving particle semi‐implicit method for free surface flow. Int J Numer Methods Fluids. 2021;93(1):148–175. doi: 10.1002/fld.4878
  • Duan G, Yamaji A, Koshizuka S, et al. The truncation and stabilization error in multiphase moving particle semi-implicit method based on corrective matrix: Which is dominant? Comput Fluids. 2019;190:254–273. doi:10.1016/j.compfluid.2019.06.023
  • Duan G, Matsunaga T, Koshizuka S, et al. New insights into error accumulation due to biased particle distribution in semi-implicit particle methods. Comput Methods Appl Mech Eng. 2022;388:114219. doi:10.1016/j.cma.2021.114219
  • Duan G, Sakai M. An enhanced semi-implicit particle method for simulating the flow of droplets with free surfaces. Comput Methods Appl Mech Eng. 2022;389:114338. doi: 10.1016/j.cma.2021.114338
  • Anderson TB, Jackson ROY. A fluid mechanical description of fluidized beds. Indus Eng Chem Fundamental. 1967;6(4):527–539. doi: 10.1021/i160024a007
  • Li M, Kong D, Guo Q, et al. Investigation of movement and deposition behaviors of solid particles in hydraulic water reservoir via the CFD-DEM coupling method. Chin J Mech Eng. 2022;35(1):118. doi: 10.1186/s10033-022-00788-z
  • Li L, Remmelgas J, van Wachem BGM, et al. Effect of drag models on residence time distributions of particles in a Wurster fluidized bed: a DEM-CFD study. KONA Powder Part J. 2016;33:264–277. doi: 10.14356/kona.2016008
  • Ergun S, Orning AA. Fluid Flow through randomly packed columns and fluidized beds. Ind Eng Chem. 1949;41(6):1179–1184. doi: 10.1021/ie50474a011
  • Wen CY, Yu YH. A generalized method for predicting the minimum fluidization velocity. AIChE J. 1966;12(3):610–612. doi: 10.1002/aic.690120343
  • Di Felice R. The voidage function for fluid-particle interaction systems. Int J Multiphase Flow. 1994;20(1):153–159. doi: 10.1016/0301-9322(94)90011-6
  • Mori Y, Sakai M. Development of a robust Eulerian–Lagrangian model for the simulation of an industrial solid–fluid system. Chem Eng J. 2021;406:126841. doi: 10.1016/j.cej.2020.126841
  • Maramizonouz S, Nadimi S. Drag force acting on ellipsoidal particles with different shape characteristics. Powder Technol. 2022;412:117964. doi: 10.1016/j.powtec.2022.117964
  • Sun X, Sakai M. Three-dimensional simulation of gas–solid–liquid flows using the DEM–VOF method. Chem Eng Sci. 2015;134:531–548. doi: 10.1016/j.ces.2015.05.059
  • Washino K, Chan EL, Kaji T, et al. On large scale CFD–DEM simulation for gas–liquid–solid three-phase flows. Particuology. 2021;59:2–15. doi:10.1016/j.partic.2020.05.006
  • Hirt CW, Nichols BD. Volume of fluid (VOF) method for the dynamics of free boundaries. J Comput Phys. 1981;39(1):201–225. doi: 10.1016/0021-9991(81)90145-5
  • Noh WF, Woodward P. SLIC (Simple Line Interface Calculation). Proceedings of the Fifth International Conference on Numerical Methods in Fluid Dynamics. Twente University, Enschede; 1976 p.330–340.
  • Youngs D. Time-dependent multi-material flow with large fluid distortion. In: Morton K, and M Baines, editors Numerical methods in fluid dynamics. San Diego, California: Academic Press Inc.; 1982. p. 273–285.
  • Martinez J-M, Chesneau X, Zeghmati B. A new curvature technique calculation for surface tension contribution in PLIC-VOF method. Computational Mechanics. 2006;37(2):182–193. doi: 10.1007/s00466-005-0689-y
  • Yokoi K. Efficient implementation of THINC scheme: A simple and practical smoothed VOF algorithm. J Comput Phys. 2007;226(2):1985–2002. doi: 10.1016/j.jcp.2007.06.020
  • Norouzi HR, Zarghami R, Sotudeh-Gharebagh R, et al. Coupled CFD-DEM Modeling. Chichester, UK: John Wiley & Sons, Ltd; 2016. doi: 10.1002/9781119005315
  • Mori Y, Sakai M. Advanced DEM simulation on powder mixing for ellipsoidal particles in an industrial mixer. Chem Eng J. 2022;429:132415. doi: 10.1016/j.cej.2021.132415
  • Sun X, Sakai M. A liquid bridge model for spherical particles applicable to asymmetric configurations. Chem Eng Sci. 2018;182:28–43. doi: 10.1016/j.ces.2018.02.034
  • Basinskas G, Sakai M. Numerical study of the mixing efficiency of a batch mixer using the discrete element method. Powder Technol. 2016;301:815–829. doi: 10.1016/j.powtec.2016.07.017
  • Tamura K, Mori Y, Takabatake K, et al. Validation study on a toroidal approximation-based capillary force model in the discrete element method simulation. Phys Fluids. 2022;34(2):023319. doi: 10.1063/5.0080792
  • Sun X, Sakai M. Immersed boundary method with artificial density in pressure equation for modeling flows confined by wall boundaries. J Chem Eng Jpn. 2017;50(3):161–169. doi: 10.1252/jcej.16we115
  • Mori Y, Takabatake K, Tsugeno Y, et al. On artificial density treatment for the pressure Poisson equation in the DEM-CFD simulations. Powder Technol. 2020;372:48–58. doi:10.1016/j.powtec.2020.05.116
  • Takabatake K, Sakai M. Flexible discretization technique for DEM-CFD simulations including thin walls. Adv Powder Technol. 2020;31(5):1825–1837. doi: 10.1016/j.apt.2020.02.017
  • Sun X, Sakai M, Yamada Y. Three-dimensional simulation of a solid–liquid flow by the DEM–SPH method. J Comput Phys. 2013;248:147–176. doi: 10.1016/j.jcp.2013.04.019
  • Sun X, Sakai M, Sakai M-T, et al. A Lagrangian–Lagrangian coupled method for three-dimensional solid–liquid flows involving free surfaces in a rotating cylindrical tank. Chem Eng J. 2014;246:122–141. doi:10.1016/j.cej.2014.02.049
  • Yamada Y, Sakai M. Lagrangian-Lagrangian simulations of solid-liquid flows in a bead mill. Powder Technol. 2013;239:105–114. doi: 10.1016/j.powtec.2013.01.030
  • Sakai M, Abe M, Shigeto Y, et al. Verification and validation of a coarse grain model of the DEM in a bubbling fluidized bed. Chem Eng J. 2014;244:33–43. doi:10.1016/j.cej.2014.01.029
  • Sakai M, Mori Y, Sun X, et al. Recent Progress on Mesh-free Particle Methods for Simulations of Multi-phase Flows: A Review. KONA Powder Part J. 2020;37:132–144. doi: 10.14356/kona.2020017
  • Yao H, Mori Y, Takabatake K, et al. Numerical investigation on the influence of air flow in a die filling process. J Taiwan Inst Chem Eng. 2018;90:9–17. doi:10.1016/j.jtice.2017.11.031
  • Al Falahi F, Mueller G, Al-Dahhan M. Pebble bed nuclear reactor structure study: A comparison of the experimental and calculated void fraction distribution. Prog Nucl Energy. 2018;106:153–161. doi: 10.1016/j.pnucene.2018.03.006
  • Li Z, Feng K, Zhao Z, et al. Neutronics study on HCCB blanket for CFETR. Fusion Eng Des. 2017;124:1273–1276. doi:10.1016/j.fusengdes.2017.02.027
  • Gámez Rodríguez A, Rojas Mazaira LY, García Hernández CR, et al. An integral 3D full-scale steady-state thermohydraulic calculation of the high temperature pebble bed gas-cooled reactor HTR-10. Nucl Eng Des. 2021;373:111011. doi:10.1016/j.nucengdes.2020.111011
  • van der Laan J, Fedorov A, van Til S, et al. Ceramic breeder materials. Compr Nucl Mater. 2012;463–510. Elsevier.
  • Gong B, Feng Y, Liao H, et al. Discrete element modeling of pebble bed packing structures for HCCB TBM. Fusion Eng Des. 2017;121:256–264. doi:10.1016/j.fusengdes.2017.08.002
  • Feng Y, Gong B, Cheng H, et al. Effects of bed dimension, friction coefficient and pebble size distribution on the packing structures of the pebble bed for solid tritium breeder blanket. Fusion Eng Des. 2021;163:112156. doi:10.1016/j.fusengdes.2020.112156
  • Wu Q, Lei M, Wang J, et al. Packing characteristics of pebble beds for fusion reactors under different friction coefficients. Fusion Eng Des. 2022;176:113051. doi:10.1016/j.fusengdes.2022.113051
  • Sohn D, Lee Y, Ahn M-Y, et al. Numerical prediction of packing behavior and thermal conductivity of pebble beds according to pebble size distributions and friction coefficients. Fusion Eng Des. 2018;137:182–190. doi:10.1016/j.fusengdes.2018.09.012
  • Desu RK, Moorthy A, Annabattula RK. DEM simulation of packing mono-sized pebbles into prismatic containers through different filling strategies. Fusion Eng Des. 2018;127:259–266. doi: 10.1016/j.fusengdes.2018.01.005
  • Li Y, Huang T, Xu S, et al. Study on the perturbation effect of the different vibration frequency and amplitude to the fusion pebble bed. Fusion Eng Des. 2019;138:358–363. doi:10.1016/j.fusengdes.2018.12.041
  • Dai W, Reimann J, Hanaor D, et al. Modes of wall induced granular crystallisation in vibrational packing. Granul Matter. 2019;21(2):26. doi: 10.1007/s10035-019-0876-8
  • Feng Y, Gong B, Cheng H, et al. Effects of fixed wall and pebble size ratio on packing properties and contact force distribution in binary-sized pebble mixed beds at the maximum packing efficiency state. Powder Technol. 2021;390:504–520. doi:10.1016/j.powtec.2021.05.099
  • Almusafir RS, Jasim AA, Al-Dahhan MH. Review of the fluid dynamics and heat transport phenomena in packed pebble bed nuclear reactors. Nucl Sci Eng. 2023;197(6):1001–1037. doi: 10.1080/00295639.2022.2146993
  • Gong B, Feng Y, Liao H, et al. Numerical investigation of the pebble bed structures for HCCB TBM. Fusion Eng Des. 2018;136:1444–1451. doi:10.1016/j.fusengdes.2018.05.033
  • Potgieter MC, du Toit CG. The porosity distribution in the HTTU annular packed bed of spheres. Nucl Eng Des. 2023;402:112124. doi: 10.1016/j.nucengdes.2022.112124
  • Gong B, Cheng H, Yan J, et al. Effects of the aspect ratio and cross-sectional area of rectangular tubes on packing characteristics of mono-sized pebble beds. Energies (Basel). 2023;16(1):570. doi: 10.3390/en16010570
  • De Beer M, Du Toit CG, Rousseau PG. A methodology to investigate the contribution of conduction and radiation heat transfer to the effective thermal conductivity of packed graphite pebble beds, including the wall effect. Nucl Eng Des. 2017;314:67–81. doi: 10.1016/j.nucengdes.2017.01.010
  • Wang J, Lei M, Yang H, et al. Effects of coefficient of friction and coefficient of restitution on static packing characteristics of polydisperse spherical pebble bed. Particuology. 2021;57:1–9. doi:10.1016/j.partic.2020.12.013
  • Kim D-O, Hwang S-P, Sohn D. DEM study of packing and connectivity of binary-sized pebbles according to their size and mixing ratios under vibration conditions. Fusion Eng Des. 2021;168:112648. doi: 10.1016/j.fusengdes.2021.112648
  • Panchal M, Chaudhuri P, Van Lew JT, et al. Numerical modelling for the effective thermal conductivity of lithium meta titanate pebble bed with different packing structures. Fusion Eng Des. 2016;112:303–310. doi:10.1016/j.fusengdes.2016.08.027
  • Chen L, Wang C, Moscardini M, et al. A DEM-based heat transfer model for the evaluation of effective thermal conductivity of packed beds filled with stagnant fluid: Thermal contact theory and numerical simulation. Int J Heat Mass Transf. 2019;132:331–346. doi:10.1016/j.ijheatmasstransfer.2018.12.005
  • Wu M, Liu X, Gui N, et al. Prediction of the remaining time and time interval of pebbles in pebble bed HTGRs aided by CNN via DEM datasets. Nucl Eng Technol. 2023;55(1):339–352. doi: 10.1016/j.net.2022.09.019
  • Wu M, Gui N, Yang X, et al. Effects of 3D contraction on pebble flow uniformity and stagnation in pebble beds. Nucl Eng Technol. 2021;53(5):1416–1428. doi: 10.1016/j.net.2020.10.022
  • Li Y, Gui N, Yang X, et al. Experimental research and DEM simulations on stagnant region in pebble bed reactor. International Conference on Nuclear Engineering American Society of Mechanical Engineers. Chengdu, China. 2013. p. 55799:V002T03A012.
  • Wu M, Gui N, Liu X, et al. Numerical analysis of the effects of different outlet sizes on pebble flows in HTR-10 pebble beds. Nucl Eng Des. 2022;387:111620. doi:10.1016/j.nucengdes.2021.111620
  • Li Y, Gui N, Yang X, et al. Effect of wall structure on pebble stagnation behavior in pebble bed reactor. Ann Nucl Energy. 2015;80:195–202. doi:10.1016/j.anucene.2015.02.011
  • Qi H, Gui N, Yang X, et al. Effects of restitution coefficient on pebble motion in a thin pebble bed – Lagrangian analysis. Ann Nucl Energy. 2020;145:145. doi:10.1016/j.anucene.2020.107549
  • Li B, Gui N, Wu H, et al. Effects of the 3-D wall structures on the flow and mixing characteristics of pebbles in pebble beds in HTR-10. Ann Nucl Energy. 2021;164:108607. doi:10.1016/j.anucene.2021.108607
  • Tang Y, Zhang L, Guo Q, et al. Analysis of the pebble burnup profile in a pebble-bed nuclear reactor. Nucl Eng Des. 2019;345:233–251. doi:10.1016/j.nucengdes.2019.01.030
  • Stronge WJ. Rigid body collisions with friction. Proc R Soc Lond A Math Phys Sci. 1990;431:169–181.
  • Hiruta M, Johnson G, Rostamian M, et al. Computational and experimental prediction of dust production in pebble bed reactors, Part II. Nucl Eng Des. 2013;263:509–514. doi:10.1016/j.nucengdes.2013.04.032
  • Fachinger J, Barnert H, Kummer AP, et al. Examination of Dust in AVR Pipe Components. In: Fourth international topical meeting on high temperature reactor technology, volume 1. Washington: ASMEDC; 2008. p. 591–602.
  • Gottaut H, Krüger K. Results of experiments at the AVR reactor. Nucl Eng Des. 1990;121(2):143–153. doi: 10.1016/0029-5493(90)90099-J
  • Cogliati JJ, Ougouag AM, Ortensi J. Survey of dust production in pebble bed reactor cores. Nucl Eng Des. 2011;241(6):2364–2369. doi: 10.1016/j.nucengdes.2011.03.023
  • Zhang H, Li Z, Guo H, et al. DEM-CFD simulation of purge gas flow in a solid breeder pebble bed. Fusion Eng Des. 2016;113:288–292. doi:10.1016/j.fusengdes.2016.06.045
  • Ding W, Xiao X, Cai Q, et al. Numerical investigation of fluid–solid interaction during debris bed formation based on MPS-DEM. Ann Nucl Energy. 2022;175:109244. doi:10.1016/j.anucene.2022.109244
  • Guo L, Morita K, Tobita Y. Numerical simulations on self-leveling behaviors with cylindrical debris bed. Nucl Eng Des. 2017;315:61–68. doi: 10.1016/j.nucengdes.2017.02.024
  • Mardus-Hall R, Ho M, Pastrello A, et al. 3-Way coupled thermohydraulic-discrete element-neutronic simulation of solid fuel, molten salt reactor. Ann Nucl Energy. 2020;135:106973. doi:10.1016/j.anucene.2019.106973
  • Wu Z, Wu Y, Tang S, et al. DEM-CFD simulation of helium flow characteristics in randomly packed bed for fusion reactors. Prog Nucl Energy. 2018;109:29–37. doi:10.1016/j.pnucene.2018.07.010
  • Chen Y, Chen L, Liu S, et al. Flow characteristics analysis of purge gas in unitary pebble beds by CFD simulation coupled with DEM geometry model for fusion blanket. Fusion Eng Des. 2017;114:84–90. doi:10.1016/j.fusengdes.2016.12.003
  • Yang J, Wu J, Zhou L, et al. Computational study of fluid flow and heat transfer in composite packed beds of spheres with low tube to particle diameter ratio. Nucl Eng Des. 2016;300:85–96. doi:10.1016/j.nucengdes.2015.10.030
  • van der Merwe WJS, du Toit CG, Kruger JH et al. Influence of the packing structure on the flow through packed beds with small cylinder diameter to particle diameter ratios. Nucl Eng Des. 2020;365:110700. doi: 10.1016/j.nucengdes.2020.110700
  • Sharma A, Thakur A, Saha SK, et al. Thermal-hydraulic characteristics of purge gas in a rectangular packed pebble bed of a fusion reactor using DEM-CFD and porous medium analyses. Fusion Eng Des. 2020;160:160. doi:10.1016/j.fusengdes.2020.111848
  • Zhang S, Zhao X, Yang Z. Flow Simulations in a Pebble Bed Reactor by a Combined DEM-CFD Approach. Nucl Sci Eng. 2018;189(2):135–151. doi: 10.1080/00295639.2017.1388090
  • Chen L, Chen Y, Huang K, et al. Investigation of effective thermal conductivity for pebble beds by one-way coupled CFD-DEM method for CFETR WCCB. Fusion Eng Des. 2016;106:1–8. doi:10.1016/j.fusengdes.2016.03.001
  • Gui N, Li Z, Zhang Z, et al. Numerical study of pebble recirculation in a two-dimensional pebble bed of stationary atmosphere using LB-IB-DEM coupled method. Ann Nucl Energy. 2019;124:58–68. doi:10.1016/j.anucene.2018.09.018
  • Takahashi N, Duan G, Yamaji A, et al. Development of MPS method and analytical approach for investigating RPV debris bed and lower head interaction in 1F Units-2 and 3. Nucl Eng Des. 2021;379:111244. doi:10.1016/j.nucengdes.2021.111244
  • Muramoto T, Nishiyama J, Obara T. Granular fuel debris shape modeling in MPS-DEM for the simulation of fuel debris bed formation in water. J Nucl Sci Technol. 2022;59(4):438–445. doi: 10.1080/00223131.2021.1975584
  • Albano R, Sole A, Mirauda D, et al. Modelling large floating bodies in urban area flash-floods via a Smoothed Particle Hydrodynamics model. J Hydrol (Amst). 2016;541:344–358. doi:10.1016/j.jhydrol.2016.02.009
  • Amicarelli A, Albano R, Mirauda D, et al. A Smoothed Particle Hydrodynamics model for 3D solid body transport in free surface flows. Comput Fluids. 2015;116:205–228. doi:10.1016/j.compfluid.2015.04.018
  • López-Honorato E, Meadows PJ, Xiao P. Fluidized bed chemical vapor deposition of pyrolytic carbon – I. Effect of deposition conditions on microstructure. Carbon N Y. 2009;47(2):396–410. doi: 10.1016/j.carbon.2008.10.023
  • Hwang B, Park HS, Jung WH, et al. Numerical validation and investigation for the sedimentation of solid particles in liquid pool using the CFD-DEM coupling algorithm. Nucl Eng Des. 2019;355:110364. doi:10.1016/j.nucengdes.2019.110364
  • Ding W, Chen R, Tian W, et al. Numerical investigation of dynamic characteristics of debris bed formation based on CFD-DEM method. Ann Nucl Energy. 2023;180:109492. doi:10.1016/j.anucene.2022.109492
  • Ma W, Dinh T-N. The effects of debris bed’s prototypical characteristics on corium coolability in a LWR severe accident. Nucl Eng Des. 2010;240(3):598–608. doi: 10.1016/j.nucengdes.2009.10.026
  • Rashid M, Kulenovic R, Laurien E, et al. Experimental results on the coolability of a debris bed with multidimensional cooling effects. Nucl Eng Des. 2011;241(11):4537–4543. doi: 10.1016/j.nucengdes.2010.11.023
  • Guo L, Morita K, Tobita Y. Numerical simulation of gas–solid fluidized beds by coupling a fluid-dynamics model with the discrete element method. Ann Nucl Energy. 2014;72:31–38. doi: 10.1016/j.anucene.2014.04.031
  • Sakai M, Koshizuka S. Large-scale discrete element modeling in pneumatic conveying. Chem Eng Sci. 2009;64(3):533–539. doi: 10.1016/j.ces.2008.10.003
  • Govender N. A DEM study on the thermal conduction of granular material in a rotating drum using polyhedral particles on GPUs. Chem Eng Sci. 2022;252:117491. doi: 10.1016/j.ces.2022.117491
  • Xie Z, Shen Y, Takabatake K, et al. Coarse-grained DEM study of solids sedimentation in water. Powder Technol. 2020;361:21–32. doi:10.1016/j.powtec.2019.11.034
  • Mori Y, Wu CY, Sakai M. Validation study on a scaling law model of the DEM in industrial gas-solid flows. Powder Technol. 2019;343:101–112. doi: 10.1016/j.powtec.2018.11.015
  • Widartiningsih PM, Mori Y, Takabatake K, et al. Coarse graining DEM simulations of a powder die-filling system. Powder Technol. 2020;371:83–95. doi:10.1016/j.powtec.2020.05.063
  • Di Renzo A, Napolitano E, Di Maio F. Coarse-Grain DEM Modelling in Fluidized Bed Simulation: A Review. Processes. 2021;9(2):279. doi: 10.3390/pr9020279
  • Markauskas D, Kačeniauskas A, Maknickas A. Dynamic domain decomposition applied to hopper discharge simulation by discrete element method. Inf Technol Control. 2011;40(4). doi: 10.5755/j01.itc.40.4.978
  • Gan JQ, Zhou ZY, Yu AB. A GPU-based DEM approach for modelling of particulate systems. Powder Technol. 2016;301:1172–1182. doi: 10.1016/j.powtec.2016.07.072
  • He Y, Muller F, Hassanpour A, et al. A CPU-GPU cross-platform coupled CFD-DEM approach for complex particle-fluid flows. Chem Eng Sci. 2020;223:115712. doi:10.1016/j.ces.2020.115712
  • Gan J, Evans T, Yu A. Application of GPU-DEM simulation on large-scale granular handling and processing in ironmaking related industries. Powder Technol. 2020;361:258–273. doi: 10.1016/j.powtec.2019.08.043
  • Kureck H, Govender N, Siegmann E, et al. Industrial scale simulations of tablet coating using GPU based DEM: A validation study. Chem Eng Sci. 2019;202:462–480. doi:10.1016/j.ces.2019.03.029
  • Herman AP, Gan J, Yu A. GPU-based DEM simulation for scale-up of bladed mixers. Powder Technol. 2021;382:300–317. doi: 10.1016/j.powtec.2020.12.045
  • Sun Q, Peng W, Yu S, et al. A review of HTGR graphite dust transport research. Nucl Eng Des. 2020;360:110477. doi:10.1016/j.nucengdes.2019.110477
  • Aissa A, Abdelouahab M, Noureddine A, et al. Ranz and Marshall correlations limits on heat flow between a sphere and its surrounding gas at high temperature. Therm Sci. 2015;19(5):1521–1528. doi: 10.2298/TSCI120912090A
  • Li J, Mason DJ. A computational investigation of transient heat transfer in pneumatic transport of granular particles. Powder Technol. 2000;112(3):273–282. doi: 10.1016/S0032-5910(00)00302-8
  • Sun B, Tenneti S, Subramaniam S. Modeling average gas–solid heat transfer using particle-resolved direct numerical simulation. Int J Heat Mass Transf. 2015;86:898–913. doi: 10.1016/j.ijheatmasstransfer.2015.03.046
  • Chen L, Lee J. Effects of inserted sphere on thermal field and heat-transfer characteristics of face-centered-cubic-structured pebble bed. Appl Therm Eng. 2020;172:115151. doi: 10.1016/j.applthermaleng.2020.115151
  • Wakao N, Kaguei S, Funazkri T. Effect of fluid dispersion coefficients on particle-to-fluid heat transfer coefficients in packed beds. Chem Eng Sci. 1979;34(3):325–336. doi: 10.1016/0009-2509(79)85064-2

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.