642
Views
0
CrossRef citations to date
0
Altmetric
Article

A Raman spectroscopy study of bicarbonate effects on UO2+x

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , & show all
Pages 1586-1594 | Received 06 Sep 2022, Accepted 13 Jun 2023, Published online: 16 Jul 2023

References

  • Minari E, Okamura T, Nakase M, et al. Evaluation of the technical options of radioactive waste management for utilization of MOX fuel: thermal impact of minor actinide separation with geological disposal of high-level waste. J Nucl Sci Technol. 2021;58(10):1123–1133. doi: 10.1080/00223131.2021.1918590
  • Grambow B, Nitta A, Shibata A et al. Ten years after the NPP accident at Fukushima: review on fuel debris behaviour in contact with water. J Nucl Sci Technol. 2022; 59(1):1–24. doi: 10.1080/00223131.2021.1966347
  • Sun Y, Wang H, Zhao W. Effect of leaching solutions on chemical durability of a natural metamict titanite. J Nucl Sci Technol. 2020;57(7):792–799. doi: 10.1080/00223131.2020.1724205
  • He Y, Lu P, Ye W, et al. Coupled chemo-hydro-mechanical effects on volume change behaviour of compacted bentonite used as buffer/backfill material in high-level radioactive waste repository. J Nucl Sci Technol. 2022;59(10):1207–1231. doi: 10.1080/00223131.2022.2044930
  • Terashima M, Endo T, Kimuro S, et al. Iron-induced association between selenium and humic substances in groundwater from deep sedimentary formations. J Nucl Sci Technol. 2023;60(4):374–384. doi: 10.1080/00223131.2022.2111376
  • Ikeuchi H, Yano K, Washiya T. Chemical forms of uranium elevated by thermodynamic calculation associated with distribution of core materials in the damaged reactor pressure vessel. J Nucl Sci Technol. 2020;57(6):704–718. doi: 10.1080/00223131.2020.1720844
  • Romaniello SJ, Herrmann AD, Anbar AD. Uranium concentrations and 238U/235U isotope ratios in modern carbonates from the Bahamas: assessing a novel paleoredox proxy. Chem Geol. 2013;362:305–316. doi: 10.1016/j.chemgeo.2013.10.002
  • Kolodny Y, Torfstein A, Weiss-Sarusi K, et al. 238U-235U-234U fractionation between tetravalent and hexavalent uranium in seafloor phosphorites. Chem Geol. 2017;451:1–8. doi: 10.1016/j.chemgeo.2016.12.032
  • Jemison NE, Shiel AE, Johnson TM, et al. Field application of 238U/235U measurements to detect reoxidation and mobilization of U(IV). Environ Sci Technol. 2018;52(6):3422–3430. doi: 10.1021/acs.est.7b05162
  • Shoesmith DW. Used fuel and uranium dioxide dissolution studies: a review, NWMO TR-2007-03. 2007.
  • Ahn TM. Dry oxidation and fracture of LWR spent fuels, NUREG-1565. Div Waste Manag Off Nucl Mater Saf Safeguards US Nucl Regul Comm. 1996:20555–0001. Washington, DC.
  • Fukuda K, Watanabe Y, Murakami H et al. Hydrochemical investigation at the Mizunami underground research laboratory – compilation of groundwater chemistry data in the Mizunami group and the Toki granite. Japanese Atomic Energy Agency. 2020.
  • Kim BY, Oh JY, Baik MH et al. Effect of carbonate on the solubility of neptunium in natural granitic groundwater. Nucl Eng Technol. 2010; 42(5):552–561. doi: 10.5516/NET.2010.42.5.552
  • Kim SS, Baik MH, Choi JW, et al. The dissolution of ThO2(cr) in carbonate solutions and a granitic groundwater. J Radioanal Nucl Chem. 2010;286(1):91–97. doi: 10.1007/s10967-010-0614-5
  • Auque LF, Gimeno MJ, Gomez JB. Groundwater chemistry around a repository for spent nuclear fuel over a glacial cycle. 2006.
  • Shoesmith DW. Fuel corrosion processes under waste disposal conditions. J Nucl Mater. 2000;282(1):1–31. doi: 10.1016/S0022-3115(00)00392-5
  • Hossain MM, Ekeroth E, Jonsson M. Effects of HCO3− on the kinetics of UO2 oxidation by H2O2. J Nucl Mater. 2006;358(2–39):202–208. doi: 10.1016/j.jnucmat.2006.07.008
  • De Pablo J, Casas I, Giménez J, et al. Solid surface evolution model to predict uranium release from unirradiated UO2 and nuclear spent fuel dissolution under oxidizing conditions. J Nucl Mater. 1996;232(2–3):138–145. doi: 10.1016/S0022-3115(96)00439-4
  • Röllin S, Spahiu K, Eklund UB. Determination of dissolution rates of spent fuel in carbonate solutions under different redox conditions with a flow-through experiment. J Nucl Mater. 2001;297(3):231–243. doi: 10.1016/S0022-3115(01)00645-6
  • De Pablo J, Casas I, Gimenez J et al. The oxidative dissolution mechanism of uranium dioxide. I. The effect of temperature in hydrogen carbonate medium. Geochim Cosmochim Acta. 1999; 63(19–20):3097–3103. doi: 10.1016/S0016-7037(99)00237-9
  • Stroes-Gascoyne S, Garisto F, Betteridge JS. The effects of alpha-radiolysis on UO2 dissolution determined from batch experiments with 238Pu-doped UO2. J Nucl Mater. 2005;346(1):5–15. doi: 10.1016/j.jnucmat.2005.04.069
  • Goldik JS, Noël JJ, Shoesmith DW. Surface electrochemistry of UO2 in dilute alkaline hydrogen peroxide solutions: Part II. Effects of carbonate ions. Electrochim Acta. 2006;51(16):3278–3286. doi: 10.1016/j.electacta.2005.09.019.
  • Shoesmith DW, Kolar M, King F. A mixed-potential model to predict fuel (uranium dioxide) corrosion within a failed nuclear waste container. Corrosion. 2003;59(9):802–816. doi: 10.5006/1.3277609
  • Kumagai Y, Barreiro Fidalgo A, Jonsson M. Impact of stoichiometry on the mechanism and kinetics of oxidative dissolution of UO2 induced by H2O2 and γ-irradiation. J Phys Chem C. 2019;123(15):9919–9925. doi: 10.1021/acs.jpcc.9b00862.
  • Schoenes J. Recent spectroscopic studies of UO2. J Chem Soc Faraday Trans 2 Mol Chem Phys. 1987;83(7):1205–1213. doi: 10.1039/F29878301205.
  • Desgranges L, Baldinozzi G, Simon P, et al. Raman spectrum of U4O9: a new interpretation of damage lines in UO2. J Raman Spectrosc. 2012;43(3):455–458. doi: 10.1002/jrs.3054
  • Allen GC, Butler IS, Tuan NA. Characterisation of uranium oxides by micro-Raman spectroscopy. J Nucl Mater. 1987; 144(1–2):17–19. doi: 10.1016/0022-3115(87)90274-1.
  • Palacios ML, Taylor SH. Characterization of uranium oxides using in situ micro-raman spectroscopy. Appl Spectrosc. 2000;54(9):1372–1378. doi: 10.1366/0003702001951057.
  • Manara D, Renker B. Raman spectra of stoichiometric and hyperstoichiometric uranium dioxide. J Nucl Mater. 2003;321(2–3):233–237. doi: 10.1016/S0022-3115(03)00248-4
  • Elorrieta JM, Bonales LJ, Rodríguez-Villagra N et al. A detailed Raman and X-ray study of UO2+x oxides and related structure transitions. Phys Chem Chem Phys. 2016;18(40):28209–28216. doi: 10.1039/c6cp03800j.
  • He H, Shoesmith D. Raman spectroscopic studies of defect structures and phase transition in hyper-stoichiometric UO2+x. Phys Chem Chem Phys. 2010;12(28):8108–8117. doi: 10.1039/b925495a
  • Bragg PWH, Bragg WL. The reflection of X-rays by crystals. Proc R Soc London Ser A, Contain Pap a Math Phys Character. 1913;17:428–438.
  • Alekseyev VA, Anan’yeva LA, Rafal’skiy RP. Effects of composition on lattice parameter of UO2+x. Int Geol Rev. 1981;23(10):1229–1236. doi: 10.1080/00206818109451000
  • Lynds L, Young WA, Mohl JS et al. X-ray and density study of nonstoichiometry in uranium oxides. 1963;58–65. doi: 10.1021/ba-1964-0039.ch005
  • Spana software. 2023. https://github.com/ignasi-p/eq-diagr
  • Schoenes J. Electronic transitions, crystal field effects and phonons in UO2. Phys Rep. 1980;63(6):301–336. doi: 10.1016/0370-1573(80)90158-1
  • Ekeroth E, Roth O, Jonsson M. The relative impact of radiolysis products in radiation induced oxidative dissolution of UO2. J Nucl Mater. 2006;355(1–3):38–46. doi: 10.1016/j.jnucmat.2006.04.001
  • Rickert K, Prusnick TA, Kimani MM, et al. Assessing UO2 sample quality with μ-Raman spectroscopy. J Nucl Mater. 2019;514:1–11. doi: 10.1016/j.jnucmat.2018.11.009
  • Tan BT, Popel AJ, Wilbraham RJ, et al. Surface and electrochemical controls on UO2 dissolution under anoxic conditions. J Nucl Mater. 2019;520:41–55. doi: 10.1016/j.jnucmat.2019.03.047
  • Senanayake SD, Rousseau R, Colegrave D et al. The reaction of water on polycrystalline UO2: Pathways to surface and bulk oxidation. Pathways To Surface And Bulk Oxidation. 2005;342(1–3):179–187. doi: 10.1016/j.jnucmat.2005.04.060
  • Jégou C, Caraballo R, Peuget S et al. Raman spectroscopy characterization of actinide oxides (U1-yPuy)O2: Resistance to oxidation by the laser beam and examination of defects. J Nucl Mater. 2010;405(3):235–243. doi: 10.1016/j.jnucmat.2010.08.005
  • Guimbretière G, Desgranges L, Canizares A et al. Determination of in-depth damaged profile by Raman line scan in a pre-cut He2+ irradiated UO2. Appl Phys Lett. 2012;100(25). doi: 10.1063/1.4729588
  • Livneh T, Sterer E. Effect of pressure on the resonant multiphonon Raman scattering in UO2. Phys Rev B - Condens Matter Mater Phys. 2006;73(8):1–9. doi: 10.1103/PhysRevB.73.085118.
  • Elorrieta JM, Bonales LJ, Baonza VG et al. Temperature dependence of the Raman spectrum of UO2. J Nucl Mater. 2018;503:191–194. doi: 10.1016/j.jnucmat.2018.03.015
  • Sarsfield MJ, Taylor RJ, Puxley C, et al. Raman spectroscopy of plutonium dioxide and related materials. J Nucl Mater. 2012;427(1–3):333–342. doi: 10.1016/j.jnucmat.2012.04.034
  • Stubbs JE, Chaka AM, Ilton ES et al. UO2 oxidative corrosion by nonclassical diffusion. Phys Rev Lett. 2015;114(24):1–5. doi: 10.1103/PhysRevLett.114.246103
  • Tracy CL, Chen CH, Park S, et al. Measurement of UO2 surface oxidation using grazing-incidence x-ray diffraction: Implications for nuclear forensics. J Nucl Mater. 2018;502:68–75. doi: 10.1016/j.jnucmat.2018.01.052
  • McEachern RJ, Taylor P. A review of the oxidation of uranium dioxide at temperatures below 400°C. J Nucl Mater. 1998;254(2–3):87–121. doi: 10.1016/S0022-3115(97)00343-7